Update llama.cpp.md

This commit is contained in:
oobabooga 2023-07-25 15:31:05 -07:00
parent 77d2e9f060
commit 863d2f118f
2 changed files with 42 additions and 53 deletions

View File

@ -1,53 +0,0 @@
# Using llama.cpp in the web UI
## Setting up the models
#### Pre-converted
Place the model in the `models` folder, making sure that its name contains `ggml` somewhere and ends in `.bin`.
#### Convert LLaMA yourself
Follow the instructions in the llama.cpp README to generate the `ggml-model.bin` file: https://github.com/ggerganov/llama.cpp#usage
## GPU acceleration
Enabled with the `--n-gpu-layers` parameter.
* If you have enough VRAM, use a high number like `--n-gpu-layers 200000` to offload all layers to the GPU.
* Otherwise, start with a low number like `--n-gpu-layers 10` and then gradually increase it until you run out of memory.
To use this feature, you need to manually compile and install `llama-cpp-python` with GPU support.
#### Linux
```
pip uninstall -y llama-cpp-python
CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python --no-cache-dir
```
#### Windows
```
pip uninstall -y llama-cpp-python
set CMAKE_ARGS="-DLLAMA_CUBLAS=on"
set FORCE_CMAKE=1
pip install llama-cpp-python --no-cache-dir
```
#### macOS
```
pip uninstall -y llama-cpp-python
CMAKE_ARGS="-DLLAMA_METAL=on" FORCE_CMAKE=1 pip install llama-cpp-python --no-cache-dir
```
Here you can find the different compilation options for OpenBLAS / cuBLAS / CLBlast: https://pypi.org/project/llama-cpp-python/
## Performance
This was the performance of llama-7b int4 on my i5-12400F (cpu only):
> Output generated in 33.07 seconds (6.05 tokens/s, 200 tokens, context 17)
You can change the number of threads with `--threads N`.

42
docs/llama.cpp.md Normal file
View File

@ -0,0 +1,42 @@
# llama.cpp
llama.cpp is the best backend in two important scenarios:
1) You don't have a GPU.
2) You want to run a model that doesn't fit into your GPU.
## Setting up the models
#### Pre-converted
Download the ggml model directly into your `text-generation-webui/models` folder, making sure that its name contains `ggml` somewhere and ends in `.bin`. It's a single file.
`q4_K_M` quantization is recommended.
#### Convert Llama yourself
Follow the instructions in the llama.cpp README to generate a ggml: https://github.com/ggerganov/llama.cpp#prepare-data--run
## GPU acceleration
Enabled with the `--n-gpu-layers` parameter.
* If you have enough VRAM, use a high number like `--n-gpu-layers 1000` to offload all layers to the GPU.
* Otherwise, start with a low number like `--n-gpu-layers 10` and then gradually increase it until you run out of memory.
This feature works out of the box for NVIDIA GPUs. For other GPUs, you need to uninstall `llama-cpp-python` with
```
pip uninstall -y llama-cpp-python
```
and then recompile it using the commands here: https://pypi.org/project/llama-cpp-python/
#### macOS
For macOS, these are the commands:
```
pip uninstall -y llama-cpp-python
CMAKE_ARGS="-DLLAMA_METAL=on" FORCE_CMAKE=1 pip install llama-cpp-python --no-cache-dir
```