mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-22 16:17:57 +01:00
Update GPTQ-models-(4-bit-mode).md
This commit is contained in:
parent
8e0a997c60
commit
86ef695d37
@ -1,54 +1,31 @@
|
|||||||
GPTQ is a clever quantization algorithm that lightly reoptimizes the weights during quantization so that the accuracy loss is compensated relative to a round-to-nearest quantization. See the paper for more details: https://arxiv.org/abs/2210.17323
|
GPTQ is a clever quantization algorithm that lightly reoptimizes the weights during quantization so that the accuracy loss is compensated relative to a round-to-nearest quantization. See the paper for more details: https://arxiv.org/abs/2210.17323
|
||||||
|
|
||||||
## AutoGPTQ
|
4-bit GPTQ models reduce VRAM usage by about 75%. So LLaMA-7B fits into a 6GB GPU, and LLaMA-30B fits into a 24GB GPU.
|
||||||
|
|
||||||
AutoGPTQ is the recommended way to create new quantized models: https://github.com/PanQiWei/AutoGPTQ
|
## Overview
|
||||||
|
|
||||||
### Installation
|
There are two ways of loading GPTQ models in the web UI at the moment:
|
||||||
|
|
||||||
To load a model quantized with AutoGPTQ in the web UI, you need to first manually install the AutoGPTQ library:
|
* Using GPTQ-for-LLaMa directly:
|
||||||
|
* faster CPU offloading
|
||||||
|
* faster multi-GPU inference
|
||||||
|
* supports loading LoRAs using a monkey patch
|
||||||
|
* included by default in the one-click installers
|
||||||
|
* requires you to manually figure out the wbits/groupsize/model_type parameters for the model to be able to load it
|
||||||
|
* supports either only cuda or only triton depending on the branch
|
||||||
|
|
||||||
```
|
* Using AutoGPTQ:
|
||||||
conda activate textgen
|
* supports more models
|
||||||
git clone https://github.com/PanQiWei/AutoGPTQ.git && cd AutoGPTQ
|
* standardized (no need to guess any parameter)
|
||||||
pip install .
|
* is a proper Python library
|
||||||
```
|
* no wheels are presently available so it requires manual compilation
|
||||||
|
* supports loading both triton and cuda models
|
||||||
|
|
||||||
The last command requires `nvcc` to be installed (see the [instructions below](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#step-0-install-nvcc)).
|
For creating new quantizations, I recommend using AutoGPTQ: https://github.com/PanQiWei/AutoGPTQ
|
||||||
|
|
||||||
### Usage
|
|
||||||
|
|
||||||
When you quantize a model using AutoGPTQ, a folder containing a filed called `quantize_config.json` will be generated. Place that folder inside your `models/` folder and load it with the `--autogptq` flag:
|
|
||||||
|
|
||||||
```
|
|
||||||
python server.py --autogptq --model model_name
|
|
||||||
```
|
|
||||||
|
|
||||||
Alternatively, check the `autogptq` box in the "Model" tab of the UI before loading the model.
|
|
||||||
|
|
||||||
### Offloading
|
|
||||||
|
|
||||||
In order to do CPU offloading or multi-gpu inference with AutoGPTQ, use the `--gpu-memory` flag. It is currently somewhat slower than offloading with the `--pre_layer` option in GPTQ-for-LLaMA (more on that below).
|
|
||||||
|
|
||||||
For CPU offloading:
|
|
||||||
|
|
||||||
```
|
|
||||||
python server.py --autogptq --gpu-memory 3000MiB --model model_name
|
|
||||||
```
|
|
||||||
|
|
||||||
For multi-GPU:
|
|
||||||
|
|
||||||
```
|
|
||||||
python server.py --autogptq --gpu-memory 3000MiB 6000MiB --model model_name
|
|
||||||
```
|
|
||||||
|
|
||||||
### Using LoRAs with AutoGPTQ
|
|
||||||
|
|
||||||
Not supported yet.
|
|
||||||
|
|
||||||
## GPTQ-for-LLaMa
|
## GPTQ-for-LLaMa
|
||||||
|
|
||||||
GPTQ-for-LLaMa is the original adaptation of GPTQ for the LLaMA model. It was made by [@qwopqwop200](https://github.com/qwopqwop200/GPTQ-for-LLaMa) in this repository: https://github.com/qwopqwop200/GPTQ-for-LLaMa
|
GPTQ-for-LLaMa is the original adaptation of GPTQ for the LLaMA model. It was made possible by [@qwopqwop200](https://github.com/qwopqwop200/GPTQ-for-LLaMa): https://github.com/qwopqwop200/GPTQ-for-LLaMa
|
||||||
|
|
||||||
Different branches of GPTQ-for-LLaMa are currently available, including:
|
Different branches of GPTQ-for-LLaMa are currently available, including:
|
||||||
|
|
||||||
@ -109,9 +86,6 @@ git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa.git -b triton
|
|||||||
...
|
...
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
https://github.com/qwopqwop200/GPTQ-for-LLaMa
|
|
||||||
|
|
||||||
#### Step 2: get the pre-converted weights
|
#### Step 2: get the pre-converted weights
|
||||||
|
|
||||||
* Converted without `group-size` (better for the 7b model): https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1483891617
|
* Converted without `group-size` (better for the 7b model): https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1483891617
|
||||||
@ -183,3 +157,47 @@ pip install git+https://github.com/sterlind/GPTQ-for-LLaMa.git@lora_4bit
|
|||||||
```
|
```
|
||||||
python server.py --model llama-7b-4bit-128g --listen --lora tloen_alpaca-lora-7b --monkey-patch
|
python server.py --model llama-7b-4bit-128g --listen --lora tloen_alpaca-lora-7b --monkey-patch
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## AutoGPTQ
|
||||||
|
|
||||||
|
### Installation
|
||||||
|
|
||||||
|
To load a model quantized with AutoGPTQ in the web UI, you need to first manually install the AutoGPTQ library:
|
||||||
|
|
||||||
|
```
|
||||||
|
conda activate textgen
|
||||||
|
git clone https://github.com/PanQiWei/AutoGPTQ.git && cd AutoGPTQ
|
||||||
|
pip install .
|
||||||
|
```
|
||||||
|
|
||||||
|
The last command requires `nvcc` to be installed (see the [instructions above](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#step-0-install-nvcc)).
|
||||||
|
|
||||||
|
### Usage
|
||||||
|
|
||||||
|
When you quantize a model using AutoGPTQ, a folder containing a filed called `quantize_config.json` will be generated. Place that folder inside your `models/` folder and load it with the `--autogptq` flag:
|
||||||
|
|
||||||
|
```
|
||||||
|
python server.py --autogptq --model model_name
|
||||||
|
```
|
||||||
|
|
||||||
|
Alternatively, check the `autogptq` box in the "Model" tab of the UI before loading the model.
|
||||||
|
|
||||||
|
### Offloading
|
||||||
|
|
||||||
|
In order to do CPU offloading or multi-gpu inference with AutoGPTQ, use the `--gpu-memory` flag. It is currently somewhat slower than offloading with the `--pre_layer` option in GPTQ-for-LLaMA.
|
||||||
|
|
||||||
|
For CPU offloading:
|
||||||
|
|
||||||
|
```
|
||||||
|
python server.py --autogptq --gpu-memory 3000MiB --model model_name
|
||||||
|
```
|
||||||
|
|
||||||
|
For multi-GPU inference:
|
||||||
|
|
||||||
|
```
|
||||||
|
python server.py --autogptq --gpu-memory 3000MiB 6000MiB --model model_name
|
||||||
|
```
|
||||||
|
|
||||||
|
### Using LoRAs with AutoGPTQ
|
||||||
|
|
||||||
|
Not supported yet.
|
||||||
|
Loading…
Reference in New Issue
Block a user