containing long - items.
+ These will receive a smaller margin/padding in the CSS.
+ '''
+
+ # Helper function to check if a tag is within
or
+ def is_within_block(start_idx, end_idx, block_matches):
+ return any(start < start_idx < end or start < end_idx < end for start, end in block_matches)
+
+ # Find all ...
and ...
blocks
+ pre_blocks = [(m.start(), m.end()) for m in re.finditer(r'.*?
', html, re.DOTALL)]
+ code_blocks = [(m.start(), m.end()) for m in re.finditer(r'.*?', html, re.DOTALL)]
+ all_blocks = pre_blocks + code_blocks
+
+ # Pattern to find and ...
blocks and their contents
+ list_pattern = re.compile(r'(<[uo]l.*?>)(.*?)([uo]l>)', re.DOTALL)
+ li_pattern = re.compile(r'(.*?) ', re.DOTALL)
+
+ def process_list(match):
+ start_idx, end_idx = match.span()
+ if is_within_block(start_idx, end_idx, all_blocks):
+ return match.group(0) # Leave the block unchanged if within or
+
+ opening_tag = match.group(1)
+ list_content = match.group(2)
+ closing_tag = match.group(3)
+
+ # Find all list items within this list
+ li_matches = li_pattern.finditer(list_content)
+ has_long_item = any(len(li_match.group(1).strip()) > 224 for li_match in li_matches)
+
+ if has_long_item:
+ # Add class="long-list" to the opening tag if it doesn't already have a class
+ if 'class=' not in opening_tag:
+ opening_tag = opening_tag[:-1] + ' class="long-list">'
+ else:
+ # If there's already a class, append long-list to it
+ opening_tag = re.sub(r'class="([^"]*)"', r'class="\1 long-list"', opening_tag)
+
+ return opening_tag + list_content + closing_tag
+
+ # Process HTML and replace list blocks
+ return list_pattern.sub(process_list, html)
+
+
@functools.lru_cache(maxsize=None)
def convert_to_markdown(string):
@@ -104,7 +150,6 @@ def convert_to_markdown(string):
result = ''
is_code = False
is_latex = False
- previous_line_empty = True
for line in string.split('\n'):
stripped_line = line.strip()
@@ -122,20 +167,16 @@ def convert_to_markdown(string):
elif stripped_line.endswith('\\\\]'):
is_latex = False
- # Preserve indentation for lists and code blocks
- if stripped_line.startswith('-') or stripped_line.startswith('*') or stripped_line.startswith('+') or stripped_line.startswith('>') or re.match(r'\d+\.', stripped_line):
- result += line + '\n'
- previous_line_empty = False
- elif is_code or is_latex or line.startswith('|'):
- result += line + '\n'
- previous_line_empty = False
- else:
- if previous_line_empty:
- result += line.strip() + '\n'
- else:
- result += line.strip() + '\n\n'
+ result += line
- previous_line_empty = stripped_line == ''
+ # Don't add an extra \n for code, LaTeX, or tables
+ if is_code or is_latex or line.startswith('|'):
+ result += '\n'
+ # Also don't add an extra \n for lists
+ elif stripped_line.startswith('-') or stripped_line.startswith('*') or stripped_line.startswith('+') or stripped_line.startswith('>') or re.match(r'\d+\.', stripped_line):
+ result += '\n'
+ else:
+ result += ' \n'
result = result.strip()
if is_code:
@@ -154,7 +195,7 @@ def convert_to_markdown(string):
result = re.sub(list_item_pattern, r'\g<1> ' + delete_str, result)
# Convert to HTML using markdown
- html_output = markdown.markdown(result, extensions=['fenced_code', 'tables'], tab_length=2)
+ html_output = markdown.markdown(result, extensions=['fenced_code', 'tables'])
# Remove the delete string from the HTML output
pos = html_output.rfind(delete_str)
@@ -162,12 +203,15 @@ def convert_to_markdown(string):
html_output = html_output[:pos] + html_output[pos + len(delete_str):]
else:
# Convert to HTML using markdown
- html_output = markdown.markdown(result, extensions=['fenced_code', 'tables'], tab_length=2)
+ html_output = markdown.markdown(result, extensions=['fenced_code', 'tables'])
# Unescape code blocks
pattern = re.compile(r']*>(.*?)
', re.DOTALL)
html_output = pattern.sub(lambda x: html.unescape(x.group()), html_output)
+ # Add "long-list" class to or containing a long - item
+ html_output = add_long_list_class(html_output)
+
return html_output
diff --git a/modules/loaders.py b/modules/loaders.py
index 4cb7e349..1cfdb31b 100644
--- a/modules/loaders.py
+++ b/modules/loaders.py
@@ -26,7 +26,6 @@ loaders_and_params = OrderedDict({
'compress_pos_emb',
'disable_exllama',
'disable_exllamav2',
- 'transformers_info',
],
'llama.cpp': [
'n_ctx',
diff --git a/modules/ui_model_menu.py b/modules/ui_model_menu.py
index 189bedfd..c4bb8f01 100644
--- a/modules/ui_model_menu.py
+++ b/modules/ui_model_menu.py
@@ -80,59 +80,52 @@ def create_ui():
with gr.Blocks():
with gr.Row():
with gr.Column():
- with gr.Blocks():
- for i in range(len(total_mem)):
- shared.gradio[f'gpu_memory_{i}'] = gr.Slider(label=f"gpu-memory in MiB for device :{i}", maximum=total_mem[i], value=default_gpu_mem[i])
+ for i in range(len(total_mem)):
+ shared.gradio[f'gpu_memory_{i}'] = gr.Slider(label=f"gpu-memory in MiB for device :{i}", maximum=total_mem[i], value=default_gpu_mem[i])
- shared.gradio['cpu_memory'] = gr.Slider(label="cpu-memory in MiB", maximum=total_cpu_mem, value=default_cpu_mem)
-
- with gr.Blocks():
- shared.gradio['transformers_info'] = gr.Markdown('load-in-4bit params:')
- shared.gradio['compute_dtype'] = gr.Dropdown(label="compute_dtype", choices=["bfloat16", "float16", "float32"], value=shared.args.compute_dtype)
- shared.gradio['quant_type'] = gr.Dropdown(label="quant_type", choices=["nf4", "fp4"], value=shared.args.quant_type)
-
- shared.gradio['hqq_backend'] = gr.Dropdown(label="hqq_backend", choices=["PYTORCH", "PYTORCH_COMPILE", "ATEN"], value=shared.args.hqq_backend)
- shared.gradio['n_gpu_layers'] = gr.Slider(label="n-gpu-layers", minimum=0, maximum=256, value=shared.args.n_gpu_layers, info='Must be set to more than 0 for your GPU to be used.')
- shared.gradio['n_ctx'] = gr.Number(label="n_ctx", precision=0, step=256, value=shared.args.n_ctx, info='Context length. Try lowering this if you run out of memory while loading the model.')
- shared.gradio['tensor_split'] = gr.Textbox(label='tensor_split', info='List of proportions to split the model across multiple GPUs. Example: 60,40')
- shared.gradio['n_batch'] = gr.Slider(label="n_batch", minimum=1, maximum=2048, step=1, value=shared.args.n_batch)
+ shared.gradio['cpu_memory'] = gr.Slider(label="cpu-memory in MiB", maximum=total_cpu_mem, value=default_cpu_mem)
+ shared.gradio['n_gpu_layers'] = gr.Slider(label="n-gpu-layers", minimum=0, maximum=256, value=shared.args.n_gpu_layers, info='Must be greater than 0 for the GPU to be used. ⚠️ Lower this value if you can\'t load the model.')
shared.gradio['threads'] = gr.Slider(label="threads", minimum=0, step=1, maximum=256, value=shared.args.threads)
shared.gradio['threads_batch'] = gr.Slider(label="threads_batch", minimum=0, step=1, maximum=256, value=shared.args.threads_batch)
+ shared.gradio['n_batch'] = gr.Slider(label="n_batch", minimum=1, maximum=2048, step=1, value=shared.args.n_batch)
+ shared.gradio['hqq_backend'] = gr.Dropdown(label="hqq_backend", choices=["PYTORCH", "PYTORCH_COMPILE", "ATEN"], value=shared.args.hqq_backend)
shared.gradio['wbits'] = gr.Dropdown(label="wbits", choices=["None", 1, 2, 3, 4, 8], value=shared.args.wbits if shared.args.wbits > 0 else "None")
shared.gradio['groupsize'] = gr.Dropdown(label="groupsize", choices=["None", 32, 64, 128, 1024], value=shared.args.groupsize if shared.args.groupsize > 0 else "None")
+ shared.gradio['n_ctx'] = gr.Number(label="n_ctx", precision=0, step=256, value=shared.args.n_ctx, info='Context length. ⚠️ Lower this value if you can\'t load the model.')
+ shared.gradio['max_seq_len'] = gr.Number(label='max_seq_len', precision=0, step=256, value=shared.args.max_seq_len, info='Context length. ⚠️ Lower this value if you can\'t load the model.')
+ shared.gradio['cache_type'] = gr.Dropdown(label="cache_type", choices=['fp16', 'q8_0', 'q4_0', 'fp8', 'q8', 'q6', 'q4'], value=shared.args.cache_type, info='Valid options: llama.cpp - fp16, q8_0, q4_0; ExLlamaV2 - fp16, fp8, q8, q6, q4.')
+ shared.gradio['tensor_split'] = gr.Textbox(label='tensor_split', info='List of proportions to split the model across multiple GPUs. Example: 60,40')
shared.gradio['gpu_split'] = gr.Textbox(label='gpu-split', info='Comma-separated list of VRAM (in GB) to use per GPU. Example: 20,7,7')
- shared.gradio['max_seq_len'] = gr.Number(label='max_seq_len', precision=0, step=256, value=shared.args.max_seq_len, info='Context length. Try lowering this if you run out of memory while loading the model.')
- with gr.Blocks():
- shared.gradio['alpha_value'] = gr.Number(label='alpha_value', value=shared.args.alpha_value, precision=2, info='Positional embeddings alpha factor for NTK RoPE scaling. Recommended values (NTKv1): 1.75 for 1.5x context, 2.5 for 2x context. Use either this or compress_pos_emb, not both.')
- shared.gradio['rope_freq_base'] = gr.Number(label='rope_freq_base', value=shared.args.rope_freq_base, precision=0, info='Positional embeddings frequency base for NTK RoPE scaling. Related to alpha_value by rope_freq_base = 10000 * alpha_value ^ (64 / 63). 0 = from model.')
- shared.gradio['compress_pos_emb'] = gr.Number(label='compress_pos_emb', value=shared.args.compress_pos_emb, precision=2, info='Positional embeddings compression factor. Should be set to (context length) / (model\'s original context length). Equal to 1/rope_freq_scale.')
-
- shared.gradio['autogptq_info'] = gr.Markdown('ExLlamav2_HF is recommended over AutoGPTQ for models derived from Llama.')
+ shared.gradio['alpha_value'] = gr.Number(label='alpha_value', value=shared.args.alpha_value, precision=2, info='Positional embeddings alpha factor for NTK RoPE scaling. Recommended values (NTKv1): 1.75 for 1.5x context, 2.5 for 2x context. Use either this or compress_pos_emb, not both.')
+ shared.gradio['rope_freq_base'] = gr.Number(label='rope_freq_base', value=shared.args.rope_freq_base, precision=0, info='Positional embeddings frequency base for NTK RoPE scaling. Related to alpha_value by rope_freq_base = 10000 * alpha_value ^ (64 / 63). 0 = from model.')
+ shared.gradio['compress_pos_emb'] = gr.Number(label='compress_pos_emb', value=shared.args.compress_pos_emb, precision=2, info='Positional embeddings compression factor. Should be set to (context length) / (model\'s original context length). Equal to 1/rope_freq_scale.')
+ shared.gradio['compute_dtype'] = gr.Dropdown(label="compute_dtype", choices=["bfloat16", "float16", "float32"], value=shared.args.compute_dtype, info='Used by load-in-4bit.')
+ shared.gradio['quant_type'] = gr.Dropdown(label="quant_type", choices=["nf4", "fp4"], value=shared.args.quant_type, info='Used by load-in-4bit.')
+ shared.gradio['attention_sink_size'] = gr.Number(label="attention_sink_size", value=shared.args.attention_sink_size, precision=0, info='StreamingLLM: number of sink tokens. Only used if the trimmed prompt doesn\'t share a prefix with the old prompt.')
+ shared.gradio['num_experts_per_token'] = gr.Number(label="Number of experts per token", value=shared.args.num_experts_per_token, info='Only applies to MoE models like Mixtral.')
with gr.Column():
+ shared.gradio['tensorcores'] = gr.Checkbox(label="tensorcores", value=shared.args.tensorcores, info='NVIDIA only: use llama-cpp-python compiled with tensor cores support. This may increase performance on newer cards.')
shared.gradio['load_in_8bit'] = gr.Checkbox(label="load-in-8bit", value=shared.args.load_in_8bit)
shared.gradio['load_in_4bit'] = gr.Checkbox(label="load-in-4bit", value=shared.args.load_in_4bit)
- shared.gradio['use_double_quant'] = gr.Checkbox(label="use_double_quant", value=shared.args.use_double_quant)
- shared.gradio['use_flash_attention_2'] = gr.Checkbox(label="use_flash_attention_2", value=shared.args.use_flash_attention_2, info='Set use_flash_attention_2=True while loading the model.')
- shared.gradio['use_eager_attention'] = gr.Checkbox(label="use_eager_attention", value=shared.args.use_eager_attention, info='Set attn_implementation= eager while loading the model.')
shared.gradio['flash_attn'] = gr.Checkbox(label="flash_attn", value=shared.args.flash_attn, info='Use flash-attention.')
- shared.gradio['auto_devices'] = gr.Checkbox(label="auto-devices", value=shared.args.auto_devices)
- shared.gradio['tensorcores'] = gr.Checkbox(label="tensorcores", value=shared.args.tensorcores, info='NVIDIA only: use llama-cpp-python compiled with tensor cores support. This may increase performance on newer cards.')
- shared.gradio['cache_type'] = gr.Dropdown(label="cache_type", choices=['fp16', 'q8_0', 'q4_0', 'fp8', 'q8', 'q6', 'q4'], value=shared.args.cache_type, info='Valid options: llama.cpp - fp16, q8_0, q4_0; ExLlamaV2 - fp16, fp8, q8, q6, q4.')
+ shared.gradio['use_flash_attention_2'] = gr.Checkbox(label="use_flash_attention_2", value=shared.args.use_flash_attention_2, info='Set use_flash_attention_2=True while loading the model.')
shared.gradio['streaming_llm'] = gr.Checkbox(label="streaming_llm", value=shared.args.streaming_llm, info='(experimental) Activate StreamingLLM to avoid re-evaluating the entire prompt when old messages are removed.')
- shared.gradio['attention_sink_size'] = gr.Number(label="attention_sink_size", value=shared.args.attention_sink_size, precision=0, info='StreamingLLM: number of sink tokens. Only used if the trimmed prompt doesn\'t share a prefix with the old prompt.')
+ shared.gradio['auto_devices'] = gr.Checkbox(label="auto-devices", value=shared.args.auto_devices)
shared.gradio['cpu'] = gr.Checkbox(label="cpu", value=shared.args.cpu, info='llama.cpp: Use llama-cpp-python compiled without GPU acceleration. Transformers: use PyTorch in CPU mode.')
+ shared.gradio['disk'] = gr.Checkbox(label="disk", value=shared.args.disk)
shared.gradio['row_split'] = gr.Checkbox(label="row_split", value=shared.args.row_split, info='Split the model by rows across GPUs. This may improve multi-gpu performance.')
shared.gradio['no_offload_kqv'] = gr.Checkbox(label="no_offload_kqv", value=shared.args.no_offload_kqv, info='Do not offload the K, Q, V to the GPU. This saves VRAM but reduces the performance.')
shared.gradio['no_mul_mat_q'] = gr.Checkbox(label="no_mul_mat_q", value=shared.args.no_mul_mat_q, info='Disable the mulmat kernels.')
+ shared.gradio['no_mmap'] = gr.Checkbox(label="no-mmap", value=shared.args.no_mmap)
+ shared.gradio['mlock'] = gr.Checkbox(label="mlock", value=shared.args.mlock)
+ shared.gradio['numa'] = gr.Checkbox(label="numa", value=shared.args.numa, info='NUMA support can help on some systems with non-uniform memory access.')
shared.gradio['triton'] = gr.Checkbox(label="triton", value=shared.args.triton)
shared.gradio['no_inject_fused_mlp'] = gr.Checkbox(label="no_inject_fused_mlp", value=shared.args.no_inject_fused_mlp, info='Affects Triton only. Disable fused MLP. Fused MLP improves performance but uses more VRAM. Disable if running low on VRAM.')
shared.gradio['no_use_cuda_fp16'] = gr.Checkbox(label="no_use_cuda_fp16", value=shared.args.no_use_cuda_fp16, info='This can make models faster on some systems.')
shared.gradio['desc_act'] = gr.Checkbox(label="desc_act", value=shared.args.desc_act, info='\'desc_act\', \'wbits\', and \'groupsize\' are used for old models without a quantize_config.json.')
- shared.gradio['no_mmap'] = gr.Checkbox(label="no-mmap", value=shared.args.no_mmap)
- shared.gradio['mlock'] = gr.Checkbox(label="mlock", value=shared.args.mlock)
- shared.gradio['numa'] = gr.Checkbox(label="numa", value=shared.args.numa, info='NUMA support can help on some systems with non-uniform memory access.')
- shared.gradio['disk'] = gr.Checkbox(label="disk", value=shared.args.disk)
+ shared.gradio['use_double_quant'] = gr.Checkbox(label="use_double_quant", value=shared.args.use_double_quant, info='Used by load-in-4bit.')
+ shared.gradio['use_eager_attention'] = gr.Checkbox(label="use_eager_attention", value=shared.args.use_eager_attention, info='Set attn_implementation= eager while loading the model.')
shared.gradio['bf16'] = gr.Checkbox(label="bf16", value=shared.args.bf16)
shared.gradio['autosplit'] = gr.Checkbox(label="autosplit", value=shared.args.autosplit, info='Automatically split the model tensors across the available GPUs.')
shared.gradio['enable_tp'] = gr.Checkbox(label="enable_tp", value=shared.args.enable_tp, info='Enable Tensor Parallelism (TP).')
@@ -141,16 +134,14 @@ def create_ui():
shared.gradio['no_sdpa'] = gr.Checkbox(label="no_sdpa", value=shared.args.no_sdpa)
shared.gradio['cfg_cache'] = gr.Checkbox(label="cfg-cache", value=shared.args.cfg_cache, info='Necessary to use CFG with this loader.')
shared.gradio['cpp_runner'] = gr.Checkbox(label="cpp-runner", value=shared.args.cpp_runner, info='Enable inference with ModelRunnerCpp, which is faster than the default ModelRunner.')
- shared.gradio['num_experts_per_token'] = gr.Number(label="Number of experts per token", value=shared.args.num_experts_per_token, info='Only applies to MoE models like Mixtral.')
- with gr.Blocks():
- shared.gradio['trust_remote_code'] = gr.Checkbox(label="trust-remote-code", value=shared.args.trust_remote_code, info='Set trust_remote_code=True while loading the tokenizer/model. To enable this option, start the web UI with the --trust-remote-code flag.', interactive=shared.args.trust_remote_code)
- shared.gradio['no_use_fast'] = gr.Checkbox(label="no_use_fast", value=shared.args.no_use_fast, info='Set use_fast=False while loading the tokenizer.')
- shared.gradio['logits_all'] = gr.Checkbox(label="logits_all", value=shared.args.logits_all, info='Needs to be set for perplexity evaluation to work with this loader. Otherwise, ignore it, as it makes prompt processing slower.')
-
+ shared.gradio['logits_all'] = gr.Checkbox(label="logits_all", value=shared.args.logits_all, info='Needs to be set for perplexity evaluation to work with this loader. Otherwise, ignore it, as it makes prompt processing slower.')
shared.gradio['disable_exllama'] = gr.Checkbox(label="disable_exllama", value=shared.args.disable_exllama, info='Disable ExLlama kernel for GPTQ models.')
shared.gradio['disable_exllamav2'] = gr.Checkbox(label="disable_exllamav2", value=shared.args.disable_exllamav2, info='Disable ExLlamav2 kernel for GPTQ models.')
- shared.gradio['exllamav2_info'] = gr.Markdown("ExLlamav2_HF is recommended over ExLlamav2 for better integration with extensions and more consistent sampling behavior across loaders.")
+ shared.gradio['trust_remote_code'] = gr.Checkbox(label="trust-remote-code", value=shared.args.trust_remote_code, info='Set trust_remote_code=True while loading the tokenizer/model. To enable this option, start the web UI with the --trust-remote-code flag.', interactive=shared.args.trust_remote_code)
+ shared.gradio['no_use_fast'] = gr.Checkbox(label="no_use_fast", value=shared.args.no_use_fast, info='Set use_fast=False while loading the tokenizer.')
shared.gradio['llamacpp_HF_info'] = gr.Markdown("llamacpp_HF loads llama.cpp as a Transformers model. To use it, you need to place your GGUF in a subfolder of models/ with the necessary tokenizer files.\n\nYou can use the \"llamacpp_HF creator\" menu to do that automatically.")
+ shared.gradio['exllamav2_info'] = gr.Markdown("ExLlamav2_HF is recommended over ExLlamav2 for better integration with extensions and more consistent sampling behavior across loaders.")
+ shared.gradio['autogptq_info'] = gr.Markdown('ExLlamav2_HF is recommended over AutoGPTQ for models derived from Llama.')
shared.gradio['tensorrt_llm_info'] = gr.Markdown('* TensorRT-LLM has to be installed manually in a separate Python 3.10 environment at the moment. For a guide, consult the description of [this PR](https://github.com/oobabooga/text-generation-webui/pull/5715). \n\n* `max_seq_len` is only used when `cpp-runner` is checked.\n\n* `cpp_runner` does not support streaming at the moment.')
with gr.Column():
diff --git a/modules/ui_parameters.py b/modules/ui_parameters.py
index a2665e0d..727a1528 100644
--- a/modules/ui_parameters.py
+++ b/modules/ui_parameters.py
@@ -27,80 +27,80 @@ def create_ui(default_preset):
with gr.Column():
with gr.Row():
with gr.Column():
- shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
+ gr.Markdown('## Curve shape')
shared.gradio['temperature'] = gr.Slider(0.01, 5, value=generate_params['temperature'], step=0.01, label='temperature')
- shared.gradio['top_p'] = gr.Slider(0.0, 1.0, value=generate_params['top_p'], step=0.01, label='top_p')
- shared.gradio['top_k'] = gr.Slider(0, 200, value=generate_params['top_k'], step=1, label='top_k')
- shared.gradio['typical_p'] = gr.Slider(0.0, 1.0, value=generate_params['typical_p'], step=0.01, label='typical_p')
- shared.gradio['min_p'] = gr.Slider(0.0, 1.0, value=generate_params['min_p'], step=0.01, label='min_p')
- shared.gradio['repetition_penalty'] = gr.Slider(1.0, 1.5, value=generate_params['repetition_penalty'], step=0.01, label='repetition_penalty')
- shared.gradio['frequency_penalty'] = gr.Slider(0, 2, value=generate_params['frequency_penalty'], step=0.05, label='frequency_penalty')
- shared.gradio['presence_penalty'] = gr.Slider(0, 2, value=generate_params['presence_penalty'], step=0.05, label='presence_penalty')
- shared.gradio['repetition_penalty_range'] = gr.Slider(0, 4096, step=64, value=generate_params['repetition_penalty_range'], label='repetition_penalty_range')
- shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample')
-
- with gr.Blocks():
- shared.gradio['dry_multiplier'] = gr.Slider(0, 5, value=generate_params['dry_multiplier'], step=0.01, label='dry_multiplier', info='Set to greater than 0 to enable DRY. Recommended value: 0.8.')
- shared.gradio['dry_allowed_length'] = gr.Slider(1, 20, value=generate_params['dry_allowed_length'], step=1, label='dry_allowed_length', info='Longest sequence that can be repeated without being penalized.')
- shared.gradio['dry_base'] = gr.Slider(1, 4, value=generate_params['dry_base'], step=0.01, label='dry_base', info='Controls how fast the penalty grows with increasing sequence length.')
- shared.gradio['dry_sequence_breakers'] = gr.Textbox(value=generate_params['dry_sequence_breakers'], label='dry_sequence_breakers', info='Tokens across which sequence matching is not continued. Specified as a comma-separated list of quoted strings.')
-
- with gr.Blocks():
- shared.gradio['xtc_threshold'] = gr.Slider(0, 0.5, value=generate_params['xtc_threshold'], step=0.01, label='xtc_threshold', info='If 2 or more tokens have probability above this threshold, consider removing all but the last one.')
- shared.gradio['xtc_probability'] = gr.Slider(0, 1, value=generate_params['xtc_probability'], step=0.01, label='xtc_probability', info='Probability that the removal will actually happen. 0 disables the sampler. 1 makes it always happen.')
-
- gr.Markdown("[Learn more](https://github.com/oobabooga/text-generation-webui/wiki/03-%E2%80%90-Parameters-Tab)")
-
- with gr.Column():
- with gr.Group():
- shared.gradio['auto_max_new_tokens'] = gr.Checkbox(value=shared.settings['auto_max_new_tokens'], label='auto_max_new_tokens', info='Expand max_new_tokens to the available context length.')
- shared.gradio['ban_eos_token'] = gr.Checkbox(value=shared.settings['ban_eos_token'], label='Ban the eos_token', info='Forces the model to never end the generation prematurely.')
- shared.gradio['add_bos_token'] = gr.Checkbox(value=shared.settings['add_bos_token'], label='Add the bos_token to the beginning of prompts', info='Disabling this can make the replies more creative.')
- shared.gradio['custom_stopping_strings'] = gr.Textbox(lines=2, value=shared.settings["custom_stopping_strings"] or None, label='Custom stopping strings', info='Written between "" and separated by commas.', placeholder='"\\n", "\\nYou:"')
- shared.gradio['custom_token_bans'] = gr.Textbox(value=shared.settings['custom_token_bans'] or None, label='Token bans', info='Token IDs to ban, separated by commas. The IDs can be found in the Default or Notebook tab.')
-
- shared.gradio['penalty_alpha'] = gr.Slider(0, 5, value=generate_params['penalty_alpha'], label='penalty_alpha', info='For Contrastive Search. do_sample must be unchecked.')
- shared.gradio['guidance_scale'] = gr.Slider(-0.5, 2.5, step=0.05, value=generate_params['guidance_scale'], label='guidance_scale', info='For CFG. 1.5 is a good value.')
- shared.gradio['negative_prompt'] = gr.Textbox(value=shared.settings['negative_prompt'], label='Negative prompt', lines=3, elem_classes=['add_scrollbar'])
- shared.gradio['mirostat_mode'] = gr.Slider(0, 2, step=1, value=generate_params['mirostat_mode'], label='mirostat_mode', info='mode=1 is for llama.cpp only.')
- shared.gradio['mirostat_tau'] = gr.Slider(0, 10, step=0.01, value=generate_params['mirostat_tau'], label='mirostat_tau')
- shared.gradio['mirostat_eta'] = gr.Slider(0, 1, step=0.01, value=generate_params['mirostat_eta'], label='mirostat_eta')
- shared.gradio['epsilon_cutoff'] = gr.Slider(0, 9, value=generate_params['epsilon_cutoff'], step=0.01, label='epsilon_cutoff')
- shared.gradio['eta_cutoff'] = gr.Slider(0, 20, value=generate_params['eta_cutoff'], step=0.01, label='eta_cutoff')
- shared.gradio['encoder_repetition_penalty'] = gr.Slider(0.8, 1.5, value=generate_params['encoder_repetition_penalty'], step=0.01, label='encoder_repetition_penalty')
- shared.gradio['no_repeat_ngram_size'] = gr.Slider(0, 20, step=1, value=generate_params['no_repeat_ngram_size'], label='no_repeat_ngram_size')
-
- with gr.Column():
- with gr.Row() as shared.gradio['grammar_file_row']:
- shared.gradio['grammar_file'] = gr.Dropdown(value='None', choices=utils.get_available_grammars(), label='Load grammar from file (.gbnf)', elem_classes='slim-dropdown')
- ui.create_refresh_button(shared.gradio['grammar_file'], lambda: None, lambda: {'choices': utils.get_available_grammars()}, 'refresh-button', interactive=not mu)
- shared.gradio['save_grammar'] = gr.Button('💾', elem_classes='refresh-button', interactive=not mu)
- shared.gradio['delete_grammar'] = gr.Button('🗑️ ', elem_classes='refresh-button', interactive=not mu)
-
- shared.gradio['grammar_string'] = gr.Textbox(value='', label='Grammar', lines=16, elem_classes=['add_scrollbar', 'monospace'])
-
- with gr.Row():
- with gr.Column():
- shared.gradio['tfs'] = gr.Slider(0.0, 1.0, value=generate_params['tfs'], step=0.01, label='tfs')
- shared.gradio['top_a'] = gr.Slider(0.0, 1.0, value=generate_params['top_a'], step=0.01, label='top_a')
- shared.gradio['smoothing_factor'] = gr.Slider(0.0, 10.0, value=generate_params['smoothing_factor'], step=0.01, label='smoothing_factor', info='Activates Quadratic Sampling.')
- shared.gradio['smoothing_curve'] = gr.Slider(1.0, 10.0, value=generate_params['smoothing_curve'], step=0.01, label='smoothing_curve', info='Adjusts the dropoff curve of Quadratic Sampling.')
- shared.gradio['dynamic_temperature'] = gr.Checkbox(value=generate_params['dynamic_temperature'], label='dynamic_temperature')
shared.gradio['dynatemp_low'] = gr.Slider(0.01, 5, value=generate_params['dynatemp_low'], step=0.01, label='dynatemp_low', visible=generate_params['dynamic_temperature'])
shared.gradio['dynatemp_high'] = gr.Slider(0.01, 5, value=generate_params['dynatemp_high'], step=0.01, label='dynatemp_high', visible=generate_params['dynamic_temperature'])
shared.gradio['dynatemp_exponent'] = gr.Slider(0.01, 5, value=generate_params['dynatemp_exponent'], step=0.01, label='dynatemp_exponent', visible=generate_params['dynamic_temperature'])
- shared.gradio['temperature_last'] = gr.Checkbox(value=generate_params['temperature_last'], label='temperature_last', info='Moves temperature/dynamic temperature/quadratic sampling to the end of the sampler stack, ignoring their positions in "Sampler priority".')
- shared.gradio['sampler_priority'] = gr.Textbox(value=generate_params['sampler_priority'], lines=12, label='Sampler priority', info='Parameter names separated by new lines or commas.')
+ shared.gradio['smoothing_factor'] = gr.Slider(0.0, 10.0, value=generate_params['smoothing_factor'], step=0.01, label='smoothing_factor', info='Activates Quadratic Sampling.')
+ shared.gradio['smoothing_curve'] = gr.Slider(1.0, 10.0, value=generate_params['smoothing_curve'], step=0.01, label='smoothing_curve', info='Adjusts the dropoff curve of Quadratic Sampling.')
+
+ gr.Markdown('## Curve cutoff')
+ shared.gradio['min_p'] = gr.Slider(0.0, 1.0, value=generate_params['min_p'], step=0.01, label='min_p')
+ shared.gradio['top_p'] = gr.Slider(0.0, 1.0, value=generate_params['top_p'], step=0.01, label='top_p')
+ shared.gradio['top_k'] = gr.Slider(0, 200, value=generate_params['top_k'], step=1, label='top_k')
+ shared.gradio['typical_p'] = gr.Slider(0.0, 1.0, value=generate_params['typical_p'], step=0.01, label='typical_p')
+ shared.gradio['xtc_threshold'] = gr.Slider(0, 0.5, value=generate_params['xtc_threshold'], step=0.01, label='xtc_threshold', info='If 2 or more tokens have probability above this threshold, consider removing all but the last one.')
+ shared.gradio['xtc_probability'] = gr.Slider(0, 1, value=generate_params['xtc_probability'], step=0.01, label='xtc_probability', info='Probability that the removal will actually happen. 0 disables the sampler. 1 makes it always happen.')
+ shared.gradio['epsilon_cutoff'] = gr.Slider(0, 9, value=generate_params['epsilon_cutoff'], step=0.01, label='epsilon_cutoff')
+ shared.gradio['eta_cutoff'] = gr.Slider(0, 20, value=generate_params['eta_cutoff'], step=0.01, label='eta_cutoff')
+ shared.gradio['tfs'] = gr.Slider(0.0, 1.0, value=generate_params['tfs'], step=0.01, label='tfs')
+ shared.gradio['top_a'] = gr.Slider(0.0, 1.0, value=generate_params['top_a'], step=0.01, label='top_a')
+
+ gr.Markdown('## Repetition suppression')
+ shared.gradio['dry_multiplier'] = gr.Slider(0, 5, value=generate_params['dry_multiplier'], step=0.01, label='dry_multiplier', info='Set to greater than 0 to enable DRY. Recommended value: 0.8.')
+ shared.gradio['dry_allowed_length'] = gr.Slider(1, 20, value=generate_params['dry_allowed_length'], step=1, label='dry_allowed_length', info='Longest sequence that can be repeated without being penalized.')
+ shared.gradio['dry_base'] = gr.Slider(1, 4, value=generate_params['dry_base'], step=0.01, label='dry_base', info='Controls how fast the penalty grows with increasing sequence length.')
+ shared.gradio['repetition_penalty'] = gr.Slider(1.0, 1.5, value=generate_params['repetition_penalty'], step=0.01, label='repetition_penalty')
+ shared.gradio['frequency_penalty'] = gr.Slider(0, 2, value=generate_params['frequency_penalty'], step=0.05, label='frequency_penalty')
+ shared.gradio['presence_penalty'] = gr.Slider(0, 2, value=generate_params['presence_penalty'], step=0.05, label='presence_penalty')
+ shared.gradio['encoder_repetition_penalty'] = gr.Slider(0.8, 1.5, value=generate_params['encoder_repetition_penalty'], step=0.01, label='encoder_repetition_penalty')
+ shared.gradio['no_repeat_ngram_size'] = gr.Slider(0, 20, step=1, value=generate_params['no_repeat_ngram_size'], label='no_repeat_ngram_size')
+ shared.gradio['repetition_penalty_range'] = gr.Slider(0, 4096, step=64, value=generate_params['repetition_penalty_range'], label='repetition_penalty_range')
with gr.Column():
- shared.gradio['truncation_length'] = gr.Number(precision=0, step=256, value=get_truncation_length(), label='Truncate the prompt up to this length', info='The leftmost tokens are removed if the prompt exceeds this length. Most models require this to be at most 2048.')
+ gr.Markdown('## Alternative sampling methods')
+ shared.gradio['penalty_alpha'] = gr.Slider(0, 5, value=generate_params['penalty_alpha'], label='penalty_alpha', info='For Contrastive Search. do_sample must be unchecked.')
+ shared.gradio['guidance_scale'] = gr.Slider(-0.5, 2.5, step=0.05, value=generate_params['guidance_scale'], label='guidance_scale', info='For CFG. 1.5 is a good value.')
+ shared.gradio['mirostat_mode'] = gr.Slider(0, 2, step=1, value=generate_params['mirostat_mode'], label='mirostat_mode', info='mode=1 is for llama.cpp only.')
+ shared.gradio['mirostat_tau'] = gr.Slider(0, 10, step=0.01, value=generate_params['mirostat_tau'], label='mirostat_tau')
+ shared.gradio['mirostat_eta'] = gr.Slider(0, 1, step=0.01, value=generate_params['mirostat_eta'], label='mirostat_eta')
+
+ gr.Markdown('## Other options')
+ shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], value=shared.settings['max_new_tokens'], step=1, label='max_new_tokens', info='⚠️ Setting this too high can cause prompt truncation.')
shared.gradio['prompt_lookup_num_tokens'] = gr.Slider(value=shared.settings['prompt_lookup_num_tokens'], minimum=0, maximum=10, step=1, label='prompt_lookup_num_tokens', info='Activates Prompt Lookup Decoding.')
shared.gradio['max_tokens_second'] = gr.Slider(value=shared.settings['max_tokens_second'], minimum=0, maximum=20, step=1, label='Maximum tokens/second', info='To make text readable in real time.')
shared.gradio['max_updates_second'] = gr.Slider(value=shared.settings['max_updates_second'], minimum=0, maximum=24, step=1, label='Maximum UI updates/second', info='Set this if you experience lag in the UI during streaming.')
- shared.gradio['seed'] = gr.Number(value=shared.settings['seed'], label='Seed (-1 for random)')
+
+ with gr.Column():
+ with gr.Row():
+ with gr.Column():
+ shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample')
+ shared.gradio['dynamic_temperature'] = gr.Checkbox(value=generate_params['dynamic_temperature'], label='dynamic_temperature')
+ shared.gradio['temperature_last'] = gr.Checkbox(value=generate_params['temperature_last'], label='temperature_last', info='Moves temperature/dynamic temperature/quadratic sampling to the end of the sampler stack, ignoring their positions in "Sampler priority".')
+ shared.gradio['auto_max_new_tokens'] = gr.Checkbox(value=shared.settings['auto_max_new_tokens'], label='auto_max_new_tokens', info='Expand max_new_tokens to the available context length.')
+ shared.gradio['ban_eos_token'] = gr.Checkbox(value=shared.settings['ban_eos_token'], label='Ban the eos_token', info='Forces the model to never end the generation prematurely.')
+ shared.gradio['add_bos_token'] = gr.Checkbox(value=shared.settings['add_bos_token'], label='Add the bos_token to the beginning of prompts', info='Disabling this can make the replies more creative.')
shared.gradio['skip_special_tokens'] = gr.Checkbox(value=shared.settings['skip_special_tokens'], label='Skip special tokens', info='Some specific models need this unset.')
shared.gradio['stream'] = gr.Checkbox(value=shared.settings['stream'], label='Activate text streaming')
+ with gr.Column():
+ shared.gradio['truncation_length'] = gr.Number(precision=0, step=256, value=get_truncation_length(), label='Truncate the prompt up to this length', info='The leftmost tokens are removed if the prompt exceeds this length. Most models require this to be at most 2048.')
+ shared.gradio['seed'] = gr.Number(value=shared.settings['seed'], label='Seed (-1 for random)')
+
+ shared.gradio['sampler_priority'] = gr.Textbox(value=generate_params['sampler_priority'], lines=12, label='Sampler priority', info='Parameter names separated by new lines or commas.', elem_classes=['add_scrollbar'])
+ shared.gradio['custom_stopping_strings'] = gr.Textbox(lines=2, value=shared.settings["custom_stopping_strings"] or None, label='Custom stopping strings', info='Written between "" and separated by commas.', placeholder='"\\n", "\\nYou:"')
+ shared.gradio['custom_token_bans'] = gr.Textbox(value=shared.settings['custom_token_bans'] or None, label='Token bans', info='Token IDs to ban, separated by commas. The IDs can be found in the Default or Notebook tab.')
+ shared.gradio['negative_prompt'] = gr.Textbox(value=shared.settings['negative_prompt'], label='Negative prompt', info='For CFG. Only used when guidance_scale is different than 1.', lines=3, elem_classes=['add_scrollbar'])
+ shared.gradio['dry_sequence_breakers'] = gr.Textbox(value=generate_params['dry_sequence_breakers'], label='dry_sequence_breakers', info='Tokens across which sequence matching is not continued. Specified as a comma-separated list of quoted strings.')
+ with gr.Row() as shared.gradio['grammar_file_row']:
+ shared.gradio['grammar_file'] = gr.Dropdown(value='None', choices=utils.get_available_grammars(), label='Load grammar from file (.gbnf)', elem_classes='slim-dropdown')
+ ui.create_refresh_button(shared.gradio['grammar_file'], lambda: None, lambda: {'choices': utils.get_available_grammars()}, 'refresh-button', interactive=not mu)
+ shared.gradio['save_grammar'] = gr.Button('💾', elem_classes='refresh-button', interactive=not mu)
+ shared.gradio['delete_grammar'] = gr.Button('🗑️ ', elem_classes='refresh-button', interactive=not mu)
+
+ shared.gradio['grammar_string'] = gr.Textbox(value='', label='Grammar', lines=16, elem_classes=['add_scrollbar', 'monospace'])
+
ui_chat.create_chat_settings_ui()
diff --git a/presets/Big O.yaml b/presets/Big O.yaml
deleted file mode 100644
index 2ab18268..00000000
--- a/presets/Big O.yaml
+++ /dev/null
@@ -1,6 +0,0 @@
-temperature: 0.87
-top_p: 0.99
-typical_p: 0.68
-tfs: 0.68
-repetition_penalty: 1.01
-top_k: 85
diff --git a/presets/Creative.yaml b/presets/Creative.yaml
new file mode 100644
index 00000000..3ed04190
--- /dev/null
+++ b/presets/Creative.yaml
@@ -0,0 +1,2 @@
+min_p: 0.02
+xtc_probability: 0.5
diff --git a/presets/Debug-deterministic.yaml b/presets/Deterministic.yaml
similarity index 100%
rename from presets/Debug-deterministic.yaml
rename to presets/Deterministic.yaml
diff --git a/presets/Divine Intellect.yaml b/presets/Divine Intellect.yaml
deleted file mode 100644
index ac750e40..00000000
--- a/presets/Divine Intellect.yaml
+++ /dev/null
@@ -1,4 +0,0 @@
-temperature: 1.31
-top_p: 0.14
-repetition_penalty: 1.17
-top_k: 49
diff --git a/presets/Instruct.yaml b/presets/Instruct.yaml
new file mode 100644
index 00000000..142fcd82
--- /dev/null
+++ b/presets/Instruct.yaml
@@ -0,0 +1 @@
+min_p: 0.2
diff --git a/presets/LLaMA-Precise.yaml b/presets/LLaMA-Precise.yaml
deleted file mode 100644
index c5f9cae2..00000000
--- a/presets/LLaMA-Precise.yaml
+++ /dev/null
@@ -1,4 +0,0 @@
-temperature: 0.7
-top_p: 0.1
-repetition_penalty: 1.18
-top_k: 40
diff --git a/presets/Midnight Enigma.yaml b/presets/Midnight Enigma.yaml
deleted file mode 100644
index 0bd1763c..00000000
--- a/presets/Midnight Enigma.yaml
+++ /dev/null
@@ -1,4 +0,0 @@
-temperature: 0.98
-top_p: 0.37
-repetition_penalty: 1.18
-top_k: 100
diff --git a/presets/Shortwave.yaml b/presets/Shortwave.yaml
deleted file mode 100644
index a2528abd..00000000
--- a/presets/Shortwave.yaml
+++ /dev/null
@@ -1,4 +0,0 @@
-temperature: 1.53
-top_p: 0.64
-repetition_penalty: 1.07
-top_k: 33
diff --git a/presets/Yara.yaml b/presets/Yara.yaml
deleted file mode 100644
index 87bb019e..00000000
--- a/presets/Yara.yaml
+++ /dev/null
@@ -1,4 +0,0 @@
-temperature: 0.82
-top_p: 0.21
-repetition_penalty: 1.19
-top_k: 72
diff --git a/presets/simple-1.yaml b/presets/simple-1.yaml
deleted file mode 100644
index 30a10659..00000000
--- a/presets/simple-1.yaml
+++ /dev/null
@@ -1,4 +0,0 @@
-temperature: 0.7
-top_p: 0.9
-repetition_penalty: 1.15
-top_k: 20
diff --git a/requirements.txt b/requirements.txt
index 24c92391..8b36f54f 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -5,7 +5,7 @@ datasets
einops
fastapi==0.112.4
gradio==4.37.*
-jinja2==3.1.4
+jinja2==3.1.5
markdown
numba==0.59.*
numpy==1.26.*
@@ -50,11 +50,11 @@ https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/te
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.3.5+cu121-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
# CUDA wheels
-https://github.com/oobabooga/exllamav2/releases/download/v0.2.6/exllamav2-0.2.6+cu121.torch2.4.1-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
-https://github.com/oobabooga/exllamav2/releases/download/v0.2.6/exllamav2-0.2.6+cu121.torch2.4.1-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
-https://github.com/oobabooga/exllamav2/releases/download/v0.2.6/exllamav2-0.2.6+cu121.torch2.4.1-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
-https://github.com/oobabooga/exllamav2/releases/download/v0.2.6/exllamav2-0.2.6+cu121.torch2.4.1-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
-https://github.com/oobabooga/exllamav2/releases/download/v0.2.6/exllamav2-0.2.6-py3-none-any.whl; platform_system == "Linux" and platform_machine != "x86_64"
+https://github.com/oobabooga/exllamav2/releases/download/v0.2.7/exllamav2-0.2.7+cu121.torch2.4.1-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
+https://github.com/oobabooga/exllamav2/releases/download/v0.2.7/exllamav2-0.2.7+cu121.torch2.4.1-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
+https://github.com/oobabooga/exllamav2/releases/download/v0.2.7/exllamav2-0.2.7+cu121.torch2.4.1-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
+https://github.com/oobabooga/exllamav2/releases/download/v0.2.7/exllamav2-0.2.7+cu121.torch2.4.1-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
+https://github.com/oobabooga/exllamav2/releases/download/v0.2.7/exllamav2-0.2.7-py3-none-any.whl; platform_system == "Linux" and platform_machine != "x86_64"
https://github.com/oobabooga/flash-attention/releases/download/v2.7.2.post1/flash_attn-2.7.2.post1+cu122torch2.4.1cxx11abiFALSE-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/oobabooga/flash-attention/releases/download/v2.7.2.post1/flash_attn-2.7.2.post1+cu122torch2.4.1cxx11abiFALSE-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.2.post1/flash_attn-2.7.2.post1+cu12torch2.4cxx11abiFALSE-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
diff --git a/requirements_amd.txt b/requirements_amd.txt
index b7093d50..1b85b20f 100644
--- a/requirements_amd.txt
+++ b/requirements_amd.txt
@@ -4,7 +4,7 @@ datasets
einops
fastapi==0.112.4
gradio==4.37.*
-jinja2==3.1.4
+jinja2==3.1.5
markdown
numba==0.59.*
numpy==1.26.*
@@ -39,6 +39,6 @@ https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cp
# AMD wheels
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/rocm/llama_cpp_python_cuda-0.3.5+rocm6.1.2-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/rocm/llama_cpp_python_cuda-0.3.5+rocm6.1.2-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
-https://github.com/oobabooga/exllamav2/releases/download/v0.2.6/exllamav2-0.2.6+rocm6.1.torch2.4.1-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
-https://github.com/oobabooga/exllamav2/releases/download/v0.2.6/exllamav2-0.2.6+rocm6.1.torch2.4.1-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
-https://github.com/oobabooga/exllamav2/releases/download/v0.2.6/exllamav2-0.2.6-py3-none-any.whl; platform_system != "Darwin" and platform_machine != "x86_64"
+https://github.com/oobabooga/exllamav2/releases/download/v0.2.7/exllamav2-0.2.7+rocm6.1.torch2.4.1-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
+https://github.com/oobabooga/exllamav2/releases/download/v0.2.7/exllamav2-0.2.7+rocm6.1.torch2.4.1-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
+https://github.com/oobabooga/exllamav2/releases/download/v0.2.7/exllamav2-0.2.7-py3-none-any.whl; platform_system != "Darwin" and platform_machine != "x86_64"
diff --git a/requirements_amd_noavx2.txt b/requirements_amd_noavx2.txt
index 88682aea..1bafc141 100644
--- a/requirements_amd_noavx2.txt
+++ b/requirements_amd_noavx2.txt
@@ -4,7 +4,7 @@ datasets
einops
fastapi==0.112.4
gradio==4.37.*
-jinja2==3.1.4
+jinja2==3.1.5
markdown
numba==0.59.*
numpy==1.26.*
@@ -37,6 +37,6 @@ https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cp
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.3.5+cpuavx-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
# AMD wheels
-https://github.com/oobabooga/exllamav2/releases/download/v0.2.6/exllamav2-0.2.6+rocm6.1.torch2.4.1-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
-https://github.com/oobabooga/exllamav2/releases/download/v0.2.6/exllamav2-0.2.6+rocm6.1.torch2.4.1-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
-https://github.com/oobabooga/exllamav2/releases/download/v0.2.6/exllamav2-0.2.6-py3-none-any.whl; platform_system != "Darwin" and platform_machine != "x86_64"
+https://github.com/oobabooga/exllamav2/releases/download/v0.2.7/exllamav2-0.2.7+rocm6.1.torch2.4.1-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
+https://github.com/oobabooga/exllamav2/releases/download/v0.2.7/exllamav2-0.2.7+rocm6.1.torch2.4.1-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
+https://github.com/oobabooga/exllamav2/releases/download/v0.2.7/exllamav2-0.2.7-py3-none-any.whl; platform_system != "Darwin" and platform_machine != "x86_64"
diff --git a/requirements_apple_intel.txt b/requirements_apple_intel.txt
index 6588278d..345368b7 100644
--- a/requirements_apple_intel.txt
+++ b/requirements_apple_intel.txt
@@ -4,7 +4,7 @@ datasets
einops
fastapi==0.112.4
gradio==4.37.*
-jinja2==3.1.4
+jinja2==3.1.5
markdown
numba==0.59.*
numpy==1.26.*
@@ -33,4 +33,4 @@ tiktoken
# Mac wheels
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.3.5-cp311-cp311-macosx_14_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.11"
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.3.5-cp310-cp310-macosx_14_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.10"
-https://github.com/oobabooga/exllamav2/releases/download/v0.2.6/exllamav2-0.2.6-py3-none-any.whl
+https://github.com/oobabooga/exllamav2/releases/download/v0.2.7/exllamav2-0.2.7-py3-none-any.whl
diff --git a/requirements_apple_silicon.txt b/requirements_apple_silicon.txt
index 1fc9795b..a3c3055b 100644
--- a/requirements_apple_silicon.txt
+++ b/requirements_apple_silicon.txt
@@ -4,7 +4,7 @@ datasets
einops
fastapi==0.112.4
gradio==4.37.*
-jinja2==3.1.4
+jinja2==3.1.5
markdown
numba==0.59.*
numpy==1.26.*
@@ -35,4 +35,4 @@ https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/me
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.3.5-cp310-cp310-macosx_13_0_arm64.whl; platform_system == "Darwin" and platform_release >= "22.0.0" and platform_release < "23.0.0" and python_version == "3.10"
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.3.5-cp311-cp311-macosx_14_0_arm64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.11"
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.3.5-cp310-cp310-macosx_14_0_arm64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.10"
-https://github.com/oobabooga/exllamav2/releases/download/v0.2.6/exllamav2-0.2.6-py3-none-any.whl
+https://github.com/oobabooga/exllamav2/releases/download/v0.2.7/exllamav2-0.2.7-py3-none-any.whl
diff --git a/requirements_cpu_only.txt b/requirements_cpu_only.txt
index 53fedd7e..a4b7882c 100644
--- a/requirements_cpu_only.txt
+++ b/requirements_cpu_only.txt
@@ -4,7 +4,7 @@ datasets
einops
fastapi==0.112.4
gradio==4.37.*
-jinja2==3.1.4
+jinja2==3.1.5
markdown
numba==0.59.*
numpy==1.26.*
diff --git a/requirements_cpu_only_noavx2.txt b/requirements_cpu_only_noavx2.txt
index 9f52b172..878aea06 100644
--- a/requirements_cpu_only_noavx2.txt
+++ b/requirements_cpu_only_noavx2.txt
@@ -4,7 +4,7 @@ datasets
einops
fastapi==0.112.4
gradio==4.37.*
-jinja2==3.1.4
+jinja2==3.1.5
markdown
numba==0.59.*
numpy==1.26.*
diff --git a/requirements_noavx2.txt b/requirements_noavx2.txt
index 9ad138d8..1a345611 100644
--- a/requirements_noavx2.txt
+++ b/requirements_noavx2.txt
@@ -5,7 +5,7 @@ datasets
einops
fastapi==0.112.4
gradio==4.37.*
-jinja2==3.1.4
+jinja2==3.1.5
markdown
numba==0.59.*
numpy==1.26.*
@@ -50,11 +50,11 @@ https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/te
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.3.5+cu121avx-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
# CUDA wheels
-https://github.com/oobabooga/exllamav2/releases/download/v0.2.6/exllamav2-0.2.6+cu121.torch2.4.1-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
-https://github.com/oobabooga/exllamav2/releases/download/v0.2.6/exllamav2-0.2.6+cu121.torch2.4.1-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
-https://github.com/oobabooga/exllamav2/releases/download/v0.2.6/exllamav2-0.2.6+cu121.torch2.4.1-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
-https://github.com/oobabooga/exllamav2/releases/download/v0.2.6/exllamav2-0.2.6+cu121.torch2.4.1-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
-https://github.com/oobabooga/exllamav2/releases/download/v0.2.6/exllamav2-0.2.6-py3-none-any.whl; platform_system == "Linux" and platform_machine != "x86_64"
+https://github.com/oobabooga/exllamav2/releases/download/v0.2.7/exllamav2-0.2.7+cu121.torch2.4.1-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
+https://github.com/oobabooga/exllamav2/releases/download/v0.2.7/exllamav2-0.2.7+cu121.torch2.4.1-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
+https://github.com/oobabooga/exllamav2/releases/download/v0.2.7/exllamav2-0.2.7+cu121.torch2.4.1-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
+https://github.com/oobabooga/exllamav2/releases/download/v0.2.7/exllamav2-0.2.7+cu121.torch2.4.1-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
+https://github.com/oobabooga/exllamav2/releases/download/v0.2.7/exllamav2-0.2.7-py3-none-any.whl; platform_system == "Linux" and platform_machine != "x86_64"
https://github.com/oobabooga/flash-attention/releases/download/v2.7.2.post1/flash_attn-2.7.2.post1+cu122torch2.4.1cxx11abiFALSE-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
https://github.com/oobabooga/flash-attention/releases/download/v2.7.2.post1/flash_attn-2.7.2.post1+cu122torch2.4.1cxx11abiFALSE-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.2.post1/flash_attn-2.7.2.post1+cu12torch2.4cxx11abiFALSE-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
diff --git a/requirements_nowheels.txt b/requirements_nowheels.txt
index e2daebd9..95fe3add 100644
--- a/requirements_nowheels.txt
+++ b/requirements_nowheels.txt
@@ -4,7 +4,7 @@ datasets
einops
fastapi==0.112.4
gradio==4.37.*
-jinja2==3.1.4
+jinja2==3.1.5
markdown
numba==0.59.*
numpy==1.26.*
diff --git a/server.py b/server.py
index d6069d5e..31e1c4c6 100644
--- a/server.py
+++ b/server.py
@@ -154,6 +154,9 @@ def create_interface():
if ({str(shared.settings['dark_theme']).lower()}) {{
document.getElementsByTagName('body')[0].classList.add('dark');
}}
+ else {{
+ document.getElementsByTagName('body')[0].classList.remove('dark');
+ }}
{js}
{ui.show_controls_js}
toggle_controls(x);