diff --git a/modules/training.py b/modules/training.py index e3976d8f..52ecc55e 100644 --- a/modules/training.py +++ b/modules/training.py @@ -19,9 +19,7 @@ MAX_STEPS = 0 CURRENT_GRADIENT_ACCUM = 1 def get_json_dataset(path: str): - def get_set(): - return ['None'] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path(path).glob('*.json'))), key=str.lower) - return get_set + return ['None'] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path(path).glob('*.json'))), key=str.lower) def create_train_interface(): with gr.Tab('Train LoRA', elem_id='lora-train-tab'): @@ -32,7 +30,7 @@ def create_train_interface(): batch_size = gr.Slider(label='Batch Size', value=128, minimum=1, maximum=1024, step=4, info='Global batch size. The two batch sizes together determine gradient accumulation (gradientAccum = batch / microBatch). Higher gradient accum values lead to better quality training.') with gr.Row(): - epochs = gr.Number(label='Epochs', value=1, info='Number of times every entry in the dataset should be fed into training. So 1 means feed each item in once, 5 means feed it in five times, etc.') + epochs = gr.Number(label='Epochs', value=3, info='Number of times every entry in the dataset should be fed into training. So 1 means feed each item in once, 5 means feed it in five times, etc.') learning_rate = gr.Textbox(label='Learning Rate', value='3e-4', info='Learning rate, in scientific notation. 3e-4 is a good starting base point. 1e-2 is extremely high, 1e-6 is extremely low.') # TODO: What is the actual maximum rank? Likely distinct per model. This might be better to somehow be on a log scale. @@ -43,21 +41,19 @@ def create_train_interface(): cutoff_len = gr.Slider(label='Cutoff Length', minimum=1,maximum=2048, value=256, step=32, info='Cutoff length for text input. Essentially, how long of a line of text to feed in at a time. Higher values require drastically more VRAM.') with gr.Row(): - dataset_function = get_json_dataset('training/datasets') - dataset = gr.Dropdown(choices=dataset_function(), value='None', label='Dataset', info='The dataset file to use for training.') - ui.create_refresh_button(dataset, lambda : None, lambda : {'choices': dataset_function()}, 'refresh-button') - eval_dataset = gr.Dropdown(choices=dataset_function(), value='None', label='Evaluation Dataset', info='The dataset file used to evaluate the model after training.') - ui.create_refresh_button(eval_dataset, lambda : None, lambda : {'choices': dataset_function()}, 'refresh-button') - formats_function = get_json_dataset('training/formats') - format = gr.Dropdown(choices=formats_function(), value='None', label='Data Format', info='The format file used to decide how to format the dataset input.') - ui.create_refresh_button(format, lambda : None, lambda : {'choices': formats_function()}, 'refresh-button') + dataset = gr.Dropdown(choices=get_json_dataset('training/datasets'), value='None', label='Dataset', info='The dataset file to use for training.') + ui.create_refresh_button(dataset, lambda : None, lambda : {'choices': get_json_dataset('training/datasets')}, 'refresh-button') + eval_dataset = gr.Dropdown(choices=get_json_dataset('training/datasets'), value='None', label='Evaluation Dataset', info='The dataset file used to evaluate the model after training.') + ui.create_refresh_button(eval_dataset, lambda : None, lambda : {'choices': get_json_dataset('training/datasets')}, 'refresh-button') + format = gr.Dropdown(choices=get_json_dataset('training/formats'), value='None', label='Data Format', info='The format file used to decide how to format the dataset input.') + ui.create_refresh_button(format, lambda : None, lambda : {'choices': get_json_dataset('training/formats')}, 'refresh-button') with gr.Row(): start_button = gr.Button("Start LoRA Training") stop_button = gr.Button("Interrupt") output = gr.Markdown(value="Ready") - startEvent = start_button.click(do_train, [lora_name, micro_batch_size, batch_size, epochs, learning_rate, lora_rank, lora_alpha, lora_dropout, cutoff_len, dataset, eval_dataset, format], [output]) + start_button.click(do_train, [lora_name, micro_batch_size, batch_size, epochs, learning_rate, lora_rank, lora_alpha, lora_dropout, cutoff_len, dataset, eval_dataset, format], [output]) stop_button.click(do_interrupt, [], [], cancels=[], queue=False) def do_interrupt():