mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-23 00:18:20 +01:00
document options better
This commit is contained in:
parent
5c49a0dcd0
commit
8da237223e
@ -14,27 +14,27 @@ def get_json_dataset(path: str):
|
|||||||
def create_train_interface():
|
def create_train_interface():
|
||||||
with gr.Tab('Train LoRA', elem_id='lora-train-tab'):
|
with gr.Tab('Train LoRA', elem_id='lora-train-tab'):
|
||||||
loraName = gr.Textbox(label="Name", info="The name of your new LoRA file")
|
loraName = gr.Textbox(label="Name", info="The name of your new LoRA file")
|
||||||
# TODO: Add explanations of batch sizes and recommendations. Note that batch/microBatch determines gradient accumulation and explain what that means. Note the effects on VRAM usage from changing these values.
|
# TODO: Implement multi-device support.
|
||||||
microBatchSize = gr.Slider(label='Micro Batch Size', value=4, minimum=1, maximum=128, step=1, info='(TODO)')
|
microBatchSize = gr.Slider(label='Micro Batch Size', value=4, minimum=1, maximum=128, step=1, info='Per-device batch size (NOTE: multiple devices not yet implemented). Increasing this will increase VRAM usage.')
|
||||||
batchSize = gr.Slider(label='Batch Size', value=128, minimum=1, maximum=1024, step=4, info='(TODO)')
|
batchSize = gr.Slider(label='Batch Size', value=128, minimum=1, maximum=1024, step=4, info='Global batch size. The two batch sizes together determine gradient accumulation (gradientAccum = batch / microBatch). Higher gradient accum values lead to better quality training.')
|
||||||
epochs = gr.Slider(label='Epochs', value=1, minimum=1, maximum=1000, info='Number of times every entry in the dataset should be fed into training. So 1 means feed each item in once, 5 means feed it in five times, etc.')
|
epochs = gr.Slider(label='Epochs', value=1, minimum=1, maximum=1000, info='Number of times every entry in the dataset should be fed into training. So 1 means feed each item in once, 5 means feed it in five times, etc.')
|
||||||
learningRate = gr.Textbox(label='Learning Rate', value='3e-4', info='Learning rate, in scientific notation. 3e-4 is a good starting base point. 1e-2 is extremely high, 1e-6 is extremely low.')
|
learningRate = gr.Textbox(label='Learning Rate', value='3e-4', info='Learning rate, in scientific notation. 3e-4 is a good starting base point. 1e-2 is extremely high, 1e-6 is extremely low.')
|
||||||
# TODO: What is the actual maximum rank? Likely distinct per model. This might be better to somehow be on a log scale.
|
# TODO: What is the actual maximum rank? Likely distinct per model. This might be better to somehow be on a log scale.
|
||||||
loraRank = gr.Slider(label='LoRA Rank', value=8, minimum=1, maximum=1024, step=4, info='LoRA Rank, or dimension count. Higher values produce a larger file with better control over the model\'s content. Smaller values produce a smaller file with less overall control. Small values like 4 or 8 are great for stylistic guidance, high values like 128 or 256 are good for teaching content upgrades. Higher ranks also require higher VRAM.')
|
loraRank = gr.Slider(label='LoRA Rank', value=8, minimum=1, maximum=1024, step=4, info='LoRA Rank, or dimension count. Higher values produce a larger file with better control over the model\'s content. Smaller values produce a smaller file with less overall control. Small values like 4 or 8 are great for stylistic guidance, high values like 128 or 256 are good for teaching content upgrades. Higher ranks also require higher VRAM.')
|
||||||
loraAlpha = gr.Slider(label='LoRA Alpha', value=16, minimum=1, maximum=2048, step=4, info='LoRA Alpha. This divided by the rank becomes the scaling of the LoRA. Higher means stronger. A good standard value is twice your Rank.')
|
loraAlpha = gr.Slider(label='LoRA Alpha', value=16, minimum=1, maximum=2048, step=4, info='LoRA Alpha. This divided by the rank becomes the scaling of the LoRA. Higher means stronger. A good standard value is twice your Rank.')
|
||||||
# TODO: Better explain what this does.
|
# TODO: Better explain what this does, in terms of real world effect especially.
|
||||||
loraDropout = gr.Slider(label='LoRA Dropout', minimum=0.0, maximum=1.0, step=0.025, value=0.05, info='Percentage probability for dropout of LoRA layers.')
|
loraDropout = gr.Slider(label='LoRA Dropout', minimum=0.0, maximum=1.0, step=0.025, value=0.05, info='Percentage probability for dropout of LoRA layers.')
|
||||||
cutoffLen = gr.Slider(label='Cutoff Length', minimum=1,maximum=2048, value=256, step=32, info='Cutoff length for text input. Essentially, how long of a line of text to feed in at a time. Higher values require drastically more VRAM.')
|
cutoffLen = gr.Slider(label='Cutoff Length', minimum=1,maximum=2048, value=256, step=32, info='Cutoff length for text input. Essentially, how long of a line of text to feed in at a time. Higher values require drastically more VRAM.')
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
datasetFunction = get_json_dataset('training/datasets')
|
datasetFunction = get_json_dataset('training/datasets')
|
||||||
dataset = gr.Dropdown(choices=datasetFunction(), value='None', label='Dataset')
|
dataset = gr.Dropdown(choices=datasetFunction(), value='None', label='Dataset', info='The dataset file to use for training.')
|
||||||
ui.create_refresh_button(dataset, lambda : None, lambda : {'choices': datasetFunction()}, 'refresh-button')
|
ui.create_refresh_button(dataset, lambda : None, lambda : {'choices': datasetFunction()}, 'refresh-button')
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
evalDataset = gr.Dropdown(choices=datasetFunction(), value='None', label='Evaluation Dataset')
|
evalDataset = gr.Dropdown(choices=datasetFunction(), value='None', label='Evaluation Dataset', info='The dataset file used to evaluate the model after training.')
|
||||||
ui.create_refresh_button(evalDataset, lambda : None, lambda : {'choices': datasetFunction()}, 'refresh-button')
|
ui.create_refresh_button(evalDataset, lambda : None, lambda : {'choices': datasetFunction()}, 'refresh-button')
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
formatsFunction = get_json_dataset('training/formats')
|
formatsFunction = get_json_dataset('training/formats')
|
||||||
format = gr.Dropdown(choices=formatsFunction(), value='None', label='Data Format')
|
format = gr.Dropdown(choices=formatsFunction(), value='None', label='Data Format', info='The format file used to decide how to format the dataset input.')
|
||||||
ui.create_refresh_button(format, lambda : None, lambda : {'choices': formatsFunction()}, 'refresh-button')
|
ui.create_refresh_button(format, lambda : None, lambda : {'choices': formatsFunction()}, 'refresh-button')
|
||||||
startButton = gr.Button("Start LoRA Training")
|
startButton = gr.Button("Start LoRA Training")
|
||||||
output = gr.Markdown(value="(...)")
|
output = gr.Markdown(value="(...)")
|
||||||
|
Loading…
Reference in New Issue
Block a user