Merge pull request #618 from nikita-skakun/optimize-download-model

Improve download-model.py progress bar with multiple threads
This commit is contained in:
oobabooga 2023-03-29 20:54:19 -03:00 committed by GitHub
commit 9104164297
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -10,13 +10,13 @@ import argparse
import base64
import datetime
import json
import multiprocessing
import re
import sys
from pathlib import Path
import requests
import tqdm
from tqdm.contrib.concurrent import thread_map
parser = argparse.ArgumentParser()
parser.add_argument('MODEL', type=str, default=None, nargs='?')
@ -26,22 +26,15 @@ parser.add_argument('--text-only', action='store_true', help='Only download text
parser.add_argument('--output', type=str, default=None, help='The folder where the model should be saved.')
args = parser.parse_args()
def get_file(args):
url = args[0]
output_folder = args[1]
idx = args[2]
tot = args[3]
print(f"Downloading file {idx} of {tot}...")
def get_file(url, output_folder):
r = requests.get(url, stream=True)
with open(output_folder / Path(url.split('/')[-1]), 'wb') as f:
with open(output_folder / Path(url.rsplit('/', 1)[1]), 'wb') as f:
total_size = int(r.headers.get('content-length', 0))
block_size = 1024
t = tqdm.tqdm(total=total_size, unit='iB', unit_scale=True)
with tqdm.tqdm(total=total_size, unit='iB', unit_scale=True, bar_format='{l_bar}{bar}| {n_fmt:6}/{total_fmt:6} {rate_fmt:6}') as t:
for data in r.iter_content(block_size):
t.update(len(data))
f.write(data)
t.close()
def sanitize_branch_name(branch_name):
pattern = re.compile(r"^[a-zA-Z0-9._-]+$")
@ -152,6 +145,9 @@ def get_download_links_from_huggingface(model, branch):
return links, is_lora
def download_files(file_list, output_folder, num_threads=8):
thread_map(lambda url: get_file(url, output_folder), file_list, max_workers=num_threads, verbose=False)
if __name__ == '__main__':
model = args.MODEL
branch = args.branch
@ -192,7 +188,4 @@ if __name__ == '__main__':
# Downloading the files
print(f"Downloading the model to {output_folder}")
pool = multiprocessing.Pool(processes=args.threads)
results = pool.map(get_file, [[links[i], output_folder, i+1, len(links)] for i in range(len(links))])
pool.close()
pool.join()
download_files(links, output_folder, args.threads)