diff --git a/README.md b/README.md index a3414387..a699a9ab 100644 --- a/README.md +++ b/README.md @@ -11,7 +11,7 @@ Its goal is to become the [AUTOMATIC1111/stable-diffusion-webui](https://github. ## Features * 3 interface modes: default (two columns), notebook, and chat. -* Multiple model backends: [Transformers](https://github.com/huggingface/transformers), [llama.cpp](https://github.com/ggerganov/llama.cpp) (through [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)), [ExLlamaV2](https://github.com/turboderp/exllamav2), [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ), [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa), [QuIP#](https://github.com/Cornell-RelaxML/quip-sharp). +* Multiple model backends: [Transformers](https://github.com/huggingface/transformers), [llama.cpp](https://github.com/ggerganov/llama.cpp) (through [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)), [ExLlamaV2](https://github.com/turboderp/exllamav2), [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ), [AutoAWQ](https://github.com/casper-hansen/AutoAWQ). * Dropdown menu for quickly switching between different models. * Large number of extensions (built-in and user-contributed), including Coqui TTS for realistic voice outputs, Whisper STT for voice inputs, translation, [multimodal pipelines](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/multimodal), vector databases, Stable Diffusion integration, and a lot more. See [the wiki](https://github.com/oobabooga/text-generation-webui/wiki/07-%E2%80%90-Extensions) and [the extensions directory](https://github.com/oobabooga/text-generation-webui-extensions) for details. * [Chat with custom characters](https://github.com/oobabooga/text-generation-webui/wiki/03-%E2%80%90-Parameters-Tab#character). @@ -200,168 +200,146 @@ pip install -r --upgrade List of command-line flags -#### Basic settings +```txt +usage: server.py [-h] [--multi-user] [--character CHARACTER] [--model MODEL] [--lora LORA [LORA ...]] [--model-dir MODEL_DIR] [--lora-dir LORA_DIR] [--model-menu] [--settings SETTINGS] + [--extensions EXTENSIONS [EXTENSIONS ...]] [--verbose] [--chat-buttons] [--idle-timeout IDLE_TIMEOUT] [--loader LOADER] [--cpu] [--auto-devices] + [--gpu-memory GPU_MEMORY [GPU_MEMORY ...]] [--cpu-memory CPU_MEMORY] [--disk] [--disk-cache-dir DISK_CACHE_DIR] [--load-in-8bit] [--bf16] [--no-cache] [--trust-remote-code] + [--force-safetensors] [--no_use_fast] [--use_flash_attention_2] [--load-in-4bit] [--use_double_quant] [--compute_dtype COMPUTE_DTYPE] [--quant_type QUANT_TYPE] [--flash-attn] + [--tensorcores] [--n_ctx N_CTX] [--threads THREADS] [--threads-batch THREADS_BATCH] [--no_mul_mat_q] [--n_batch N_BATCH] [--no-mmap] [--mlock] [--n-gpu-layers N_GPU_LAYERS] + [--tensor_split TENSOR_SPLIT] [--numa] [--logits_all] [--no_offload_kqv] [--cache-capacity CACHE_CAPACITY] [--row_split] [--streaming-llm] [--attention-sink-size ATTENTION_SINK_SIZE] + [--gpu-split GPU_SPLIT] [--autosplit] [--max_seq_len MAX_SEQ_LEN] [--cfg-cache] [--no_flash_attn] [--cache_8bit] [--cache_4bit] [--num_experts_per_token NUM_EXPERTS_PER_TOKEN] + [--triton] [--no_inject_fused_mlp] [--no_use_cuda_fp16] [--desc_act] [--disable_exllama] [--disable_exllamav2] [--wbits WBITS] [--groupsize GROUPSIZE] [--no_inject_fused_attention] + [--hqq-backend HQQ_BACKEND] [--deepspeed] [--nvme-offload-dir NVME_OFFLOAD_DIR] [--local_rank LOCAL_RANK] [--alpha_value ALPHA_VALUE] [--rope_freq_base ROPE_FREQ_BASE] + [--compress_pos_emb COMPRESS_POS_EMB] [--listen] [--listen-port LISTEN_PORT] [--listen-host LISTEN_HOST] [--share] [--auto-launch] [--gradio-auth GRADIO_AUTH] + [--gradio-auth-path GRADIO_AUTH_PATH] [--ssl-keyfile SSL_KEYFILE] [--ssl-certfile SSL_CERTFILE] [--api] [--public-api] [--public-api-id PUBLIC_API_ID] [--api-port API_PORT] + [--api-key API_KEY] [--admin-key ADMIN_KEY] [--nowebui] [--multimodal-pipeline MULTIMODAL_PIPELINE] [--model_type MODEL_TYPE] [--pre_layer PRE_LAYER [PRE_LAYER ...]] + [--checkpoint CHECKPOINT] [--monkey-patch] -| Flag | Description | -|--------------------------------------------|-------------| -| `-h`, `--help` | show this help message and exit | -| `--multi-user` | Multi-user mode. Chat histories are not saved or automatically loaded. WARNING: this is likely not safe for sharing publicly. | -| `--character CHARACTER` | The name of the character to load in chat mode by default. | -| `--model MODEL` | Name of the model to load by default. | -| `--lora LORA [LORA ...]` | The list of LoRAs to load. If you want to load more than one LoRA, write the names separated by spaces. | -| `--model-dir MODEL_DIR` | Path to directory with all the models. | -| `--lora-dir LORA_DIR` | Path to directory with all the loras. | -| `--model-menu` | Show a model menu in the terminal when the web UI is first launched. | -| `--settings SETTINGS_FILE` | Load the default interface settings from this yaml file. See `settings-template.yaml` for an example. If you create a file called `settings.yaml`, this file will be loaded by default without the need to use the `--settings` flag. | -| `--extensions EXTENSIONS [EXTENSIONS ...]` | The list of extensions to load. If you want to load more than one extension, write the names separated by spaces. | -| `--verbose` | Print the prompts to the terminal. | -| `--chat-buttons` | Show buttons on the chat tab instead of a hover menu. | +Text generation web UI -#### Model loader +options: + -h, --help show this help message and exit -| Flag | Description | -|--------------------------------------------|-------------| -| `--loader LOADER` | Choose the model loader manually, otherwise, it will get autodetected. Valid options: Transformers, llama.cpp, llamacpp_HF, ExLlamav2_HF, ExLlamav2, AutoGPTQ, AutoAWQ, GPTQ-for-LLaMa, QuIP#. | +Basic settings: + --multi-user Multi-user mode. Chat histories are not saved or automatically loaded. Warning: this is likely not safe for sharing publicly. + --character CHARACTER The name of the character to load in chat mode by default. + --model MODEL Name of the model to load by default. + --lora LORA [LORA ...] The list of LoRAs to load. If you want to load more than one LoRA, write the names separated by spaces. + --model-dir MODEL_DIR Path to directory with all the models. + --lora-dir LORA_DIR Path to directory with all the loras. + --model-menu Show a model menu in the terminal when the web UI is first launched. + --settings SETTINGS Load the default interface settings from this yaml file. See settings-template.yaml for an example. If you create a file called settings.yaml, this + file will be loaded by default without the need to use the --settings flag. + --extensions EXTENSIONS [EXTENSIONS ...] The list of extensions to load. If you want to load more than one extension, write the names separated by spaces. + --verbose Print the prompts to the terminal. + --chat-buttons Show buttons on the chat tab instead of a hover menu. + --idle-timeout IDLE_TIMEOUT Unload model after this many minutes of inactivity. It will be automatically reloaded when you try to use it again. -#### Accelerate/transformers +Model loader: + --loader LOADER Choose the model loader manually, otherwise, it will get autodetected. Valid options: Transformers, llama.cpp, llamacpp_HF, ExLlamav2_HF, ExLlamav2, + AutoGPTQ, AutoAWQ. -| Flag | Description | -|---------------------------------------------|-------------| -| `--cpu` | Use the CPU to generate text. Warning: Training on CPU is extremely slow. | -| `--auto-devices` | Automatically split the model across the available GPU(s) and CPU. | -| `--gpu-memory GPU_MEMORY [GPU_MEMORY ...]` | Maximum GPU memory in GiB to be allocated per GPU. Example: --gpu-memory 10 for a single GPU, --gpu-memory 10 5 for two GPUs. You can also set values in MiB like --gpu-memory 3500MiB. | -| `--cpu-memory CPU_MEMORY` | Maximum CPU memory in GiB to allocate for offloaded weights. Same as above. | -| `--disk` | If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk. | -| `--disk-cache-dir DISK_CACHE_DIR` | Directory to save the disk cache to. Defaults to "cache". | -| `--load-in-8bit` | Load the model with 8-bit precision (using bitsandbytes). | -| `--bf16` | Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. | -| `--no-cache` | Set `use_cache` to `False` while generating text. This reduces VRAM usage slightly, but it comes at a performance cost. | -| `--trust-remote-code` | Set `trust_remote_code=True` while loading the model. Necessary for some models. | -| `--no_use_fast` | Set use_fast=False while loading the tokenizer (it's True by default). Use this if you have any problems related to use_fast. | -| `--use_flash_attention_2` | Set use_flash_attention_2=True while loading the model. | +Transformers/Accelerate: + --cpu Use the CPU to generate text. Warning: Training on CPU is extremely slow. + --auto-devices Automatically split the model across the available GPU(s) and CPU. + --gpu-memory GPU_MEMORY [GPU_MEMORY ...] Maximum GPU memory in GiB to be allocated per GPU. Example: --gpu-memory 10 for a single GPU, --gpu-memory 10 5 for two GPUs. You can also set values + in MiB like --gpu-memory 3500MiB. + --cpu-memory CPU_MEMORY Maximum CPU memory in GiB to allocate for offloaded weights. Same as above. + --disk If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk. + --disk-cache-dir DISK_CACHE_DIR Directory to save the disk cache to. Defaults to "cache". + --load-in-8bit Load the model with 8-bit precision (using bitsandbytes). + --bf16 Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. + --no-cache Set use_cache to False while generating text. This reduces VRAM usage slightly, but it comes at a performance cost. + --trust-remote-code Set trust_remote_code=True while loading the model. Necessary for some models. + --force-safetensors Set use_safetensors=True while loading the model. This prevents arbitrary code execution. + --no_use_fast Set use_fast=False while loading the tokenizer (it's True by default). Use this if you have any problems related to use_fast. + --use_flash_attention_2 Set use_flash_attention_2=True while loading the model. -#### bitsandbytes 4-bit +bitsandbytes 4-bit: + --load-in-4bit Load the model with 4-bit precision (using bitsandbytes). + --use_double_quant use_double_quant for 4-bit. + --compute_dtype COMPUTE_DTYPE compute dtype for 4-bit. Valid options: bfloat16, float16, float32. + --quant_type QUANT_TYPE quant_type for 4-bit. Valid options: nf4, fp4. -⚠️ Requires minimum compute of 7.0 on Windows at the moment. +llama.cpp: + --flash-attn Use flash-attention. + --tensorcores Use llama-cpp-python compiled with tensor cores support. This increases performance on RTX cards. NVIDIA only. + --n_ctx N_CTX Size of the prompt context. + --threads THREADS Number of threads to use. + --threads-batch THREADS_BATCH Number of threads to use for batches/prompt processing. + --no_mul_mat_q Disable the mulmat kernels. + --n_batch N_BATCH Maximum number of prompt tokens to batch together when calling llama_eval. + --no-mmap Prevent mmap from being used. + --mlock Force the system to keep the model in RAM. + --n-gpu-layers N_GPU_LAYERS Number of layers to offload to the GPU. + --tensor_split TENSOR_SPLIT Split the model across multiple GPUs. Comma-separated list of proportions. Example: 18,17. + --numa Activate NUMA task allocation for llama.cpp. + --logits_all Needs to be set for perplexity evaluation to work. Otherwise, ignore it, as it makes prompt processing slower. + --no_offload_kqv Do not offload the K, Q, V to the GPU. This saves VRAM but reduces the performance. + --cache-capacity CACHE_CAPACITY Maximum cache capacity (llama-cpp-python). Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed. + --row_split Split the model by rows across GPUs. This may improve multi-gpu performance. + --streaming-llm Activate StreamingLLM to avoid re-evaluating the entire prompt when old messages are removed. + --attention-sink-size ATTENTION_SINK_SIZE StreamingLLM: number of sink tokens. Only used if the trimmed prompt does not share a prefix with the old prompt. -| Flag | Description | -|---------------------------------------------|-------------| -| `--load-in-4bit` | Load the model with 4-bit precision (using bitsandbytes). | -| `--use_double_quant` | use_double_quant for 4-bit. | -| `--compute_dtype COMPUTE_DTYPE` | compute dtype for 4-bit. Valid options: bfloat16, float16, float32. | -| `--quant_type QUANT_TYPE` | quant_type for 4-bit. Valid options: nf4, fp4. | +ExLlamaV2: + --gpu-split GPU_SPLIT Comma-separated list of VRAM (in GB) to use per GPU device for model layers. Example: 20,7,7. + --autosplit Autosplit the model tensors across the available GPUs. This causes --gpu-split to be ignored. + --max_seq_len MAX_SEQ_LEN Maximum sequence length. + --cfg-cache ExLlamav2_HF: Create an additional cache for CFG negative prompts. Necessary to use CFG with that loader. + --no_flash_attn Force flash-attention to not be used. + --cache_8bit Use 8-bit cache to save VRAM. + --cache_4bit Use Q4 cache to save VRAM. + --num_experts_per_token NUM_EXPERTS_PER_TOKEN Number of experts to use for generation. Applies to MoE models like Mixtral. -#### llama.cpp +AutoGPTQ: + --triton Use triton. + --no_inject_fused_mlp Triton mode only: disable the use of fused MLP, which will use less VRAM at the cost of slower inference. + --no_use_cuda_fp16 This can make models faster on some systems. + --desc_act For models that do not have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig. + --disable_exllama Disable ExLlama kernel, which can improve inference speed on some systems. + --disable_exllamav2 Disable ExLlamav2 kernel. + --wbits WBITS Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported. + --groupsize GROUPSIZE Group size. -| Flag | Description | -|-------------|-------------| -| `--tensorcores` | Use llama-cpp-python compiled with tensor cores support. This increases performance on RTX cards. NVIDIA only. | -| `--flash-attn` | Use flash-attention. | -| `--n_ctx N_CTX` | Size of the prompt context. | -| `--threads` | Number of threads to use. | -| `--threads-batch THREADS_BATCH` | Number of threads to use for batches/prompt processing. | -| `--no_mul_mat_q` | Disable the mulmat kernels. | -| `--n_batch` | Maximum number of prompt tokens to batch together when calling llama_eval. | -| `--no-mmap` | Prevent mmap from being used. | -| `--mlock` | Force the system to keep the model in RAM. | -| `--n-gpu-layers N_GPU_LAYERS` | Number of layers to offload to the GPU. | -| `--tensor_split TENSOR_SPLIT` | Split the model across multiple GPUs. Comma-separated list of proportions. Example: 18,17. | -| `--numa` | Activate NUMA task allocation for llama.cpp. | -| `--logits_all`| Needs to be set for perplexity evaluation to work. Otherwise, ignore it, as it makes prompt processing slower. | -| `--no_offload_kqv` | Do not offload the K, Q, V to the GPU. This saves VRAM but reduces the performance. | -| `--cache-capacity CACHE_CAPACITY` | Maximum cache capacity (llama-cpp-python). Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed. | -| `--row_split` | Split the model by rows across GPUs. This may improve multi-gpu performance. | -| `--streaming-llm` | Activate StreamingLLM to avoid re-evaluating the entire prompt when old messages are removed. | -| `--attention-sink-size ATTENTION_SINK_SIZE` | StreamingLLM: number of sink tokens. Only used if the trimmed prompt doesn't share a prefix with the old prompt. | +AutoAWQ: + --no_inject_fused_attention Disable the use of fused attention, which will use less VRAM at the cost of slower inference. -#### ExLlamav2 +HQQ: + --hqq-backend HQQ_BACKEND Backend for the HQQ loader. Valid options: PYTORCH, PYTORCH_COMPILE, ATEN. -| Flag | Description | -|------------------|-------------| -|`--gpu-split` | Comma-separated list of VRAM (in GB) to use per GPU device for model layers. Example: 20,7,7. | -|`--max_seq_len MAX_SEQ_LEN` | Maximum sequence length. | -|`--cfg-cache` | ExLlamav2_HF: Create an additional cache for CFG negative prompts. Necessary to use CFG with that loader. | -|`--no_flash_attn` | Force flash-attention to not be used. | -|`--cache_8bit` | Use 8-bit cache to save VRAM. | -|`--cache_4bit` | Use Q4 cache to save VRAM. | -|`--num_experts_per_token NUM_EXPERTS_PER_TOKEN` | Number of experts to use for generation. Applies to MoE models like Mixtral. | +DeepSpeed: + --deepspeed Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration. + --nvme-offload-dir NVME_OFFLOAD_DIR DeepSpeed: Directory to use for ZeRO-3 NVME offloading. + --local_rank LOCAL_RANK DeepSpeed: Optional argument for distributed setups. -#### AutoGPTQ +RoPE: + --alpha_value ALPHA_VALUE Positional embeddings alpha factor for NTK RoPE scaling. Use either this or compress_pos_emb, not both. + --rope_freq_base ROPE_FREQ_BASE If greater than 0, will be used instead of alpha_value. Those two are related by rope_freq_base = 10000 * alpha_value ^ (64 / 63). + --compress_pos_emb COMPRESS_POS_EMB Positional embeddings compression factor. Should be set to (context length) / (model's original context length). Equal to 1/rope_freq_scale. -| Flag | Description | -|------------------|-------------| -| `--triton` | Use triton. | -| `--no_inject_fused_attention` | Disable the use of fused attention, which will use less VRAM at the cost of slower inference. | -| `--no_inject_fused_mlp` | Triton mode only: disable the use of fused MLP, which will use less VRAM at the cost of slower inference. | -| `--no_use_cuda_fp16` | This can make models faster on some systems. | -| `--desc_act` | For models that don't have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig. | -| `--disable_exllama` | Disable ExLlama kernel, which can improve inference speed on some systems. | -| `--disable_exllamav2` | Disable ExLlamav2 kernel. | +Gradio: + --listen Make the web UI reachable from your local network. + --listen-port LISTEN_PORT The listening port that the server will use. + --listen-host LISTEN_HOST The hostname that the server will use. + --share Create a public URL. This is useful for running the web UI on Google Colab or similar. + --auto-launch Open the web UI in the default browser upon launch. + --gradio-auth GRADIO_AUTH Set Gradio authentication password in the format "username:password". Multiple credentials can also be supplied with "u1:p1,u2:p2,u3:p3". + --gradio-auth-path GRADIO_AUTH_PATH Set the Gradio authentication file path. The file should contain one or more user:password pairs in the same format as above. + --ssl-keyfile SSL_KEYFILE The path to the SSL certificate key file. + --ssl-certfile SSL_CERTFILE The path to the SSL certificate cert file. -#### GPTQ-for-LLaMa +API: + --api Enable the API extension. + --public-api Create a public URL for the API using Cloudfare. + --public-api-id PUBLIC_API_ID Tunnel ID for named Cloudflare Tunnel. Use together with public-api option. + --api-port API_PORT The listening port for the API. + --api-key API_KEY API authentication key. + --admin-key ADMIN_KEY API authentication key for admin tasks like loading and unloading models. If not set, will be the same as --api-key. + --nowebui Do not launch the Gradio UI. Useful for launching the API in standalone mode. -| Flag | Description | -|---------------------------|-------------| -| `--wbits WBITS` | Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported. | -| `--model_type MODEL_TYPE` | Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported. | -| `--groupsize GROUPSIZE` | Group size. | -| `--pre_layer PRE_LAYER [PRE_LAYER ...]` | The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models. For multi-gpu, write the numbers separated by spaces, eg `--pre_layer 30 60`. | -| `--checkpoint CHECKPOINT` | The path to the quantized checkpoint file. If not specified, it will be automatically detected. | -| `--monkey-patch` | Apply the monkey patch for using LoRAs with quantized models. | - -#### HQQ - -| Flag | Description | -|-------------|-------------| -| `--hqq-backend` | Backend for the HQQ loader. Valid options: PYTORCH, PYTORCH_COMPILE, ATEN. | - -#### DeepSpeed - -| Flag | Description | -|---------------------------------------|-------------| -| `--deepspeed` | Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration. | -| `--nvme-offload-dir NVME_OFFLOAD_DIR` | DeepSpeed: Directory to use for ZeRO-3 NVME offloading. | -| `--local_rank LOCAL_RANK` | DeepSpeed: Optional argument for distributed setups. | - -#### RoPE (for llama.cpp, ExLlamaV2, and transformers) - -| Flag | Description | -|------------------|-------------| -| `--alpha_value ALPHA_VALUE` | Positional embeddings alpha factor for NTK RoPE scaling. Use either this or `compress_pos_emb`, not both. | -| `--rope_freq_base ROPE_FREQ_BASE` | If greater than 0, will be used instead of alpha_value. Those two are related by `rope_freq_base = 10000 * alpha_value ^ (64 / 63)`. | -| `--compress_pos_emb COMPRESS_POS_EMB` | Positional embeddings compression factor. Should be set to `(context length) / (model's original context length)`. Equal to `1/rope_freq_scale`. | - -#### Gradio - -| Flag | Description | -|---------------------------------------|-------------| -| `--listen` | Make the web UI reachable from your local network. | -| `--listen-port LISTEN_PORT` | The listening port that the server will use. | -| `--listen-host LISTEN_HOST` | The hostname that the server will use. | -| `--share` | Create a public URL. This is useful for running the web UI on Google Colab or similar. | -| `--auto-launch` | Open the web UI in the default browser upon launch. | -| `--gradio-auth USER:PWD` | Set Gradio authentication password in the format "username:password". Multiple credentials can also be supplied with "u1:p1,u2:p2,u3:p3". | -| `--gradio-auth-path GRADIO_AUTH_PATH` | Set the Gradio authentication file path. The file should contain one or more user:password pairs in the same format as above. | -| `--ssl-keyfile SSL_KEYFILE` | The path to the SSL certificate key file. | -| `--ssl-certfile SSL_CERTFILE` | The path to the SSL certificate cert file. | - -#### API - -| Flag | Description | -|---------------------------------------|-------------| -| `--api` | Enable the API extension. | -| `--public-api` | Create a public URL for the API using Cloudfare. | -| `--public-api-id PUBLIC_API_ID` | Tunnel ID for named Cloudflare Tunnel. Use together with public-api option. | -| `--api-port API_PORT` | The listening port for the API. | -| `--api-key API_KEY` | API authentication key. | -| `--admin-key ADMIN_KEY` | API authentication key for admin tasks like loading and unloading models. If not set, will be the same as --api-key. | -| `--nowebui` | Do not launch the Gradio UI. Useful for launching the API in standalone mode. | - -#### Multimodal - -| Flag | Description | -|---------------------------------------|-------------| -| `--multimodal-pipeline PIPELINE` | The multimodal pipeline to use. Examples: `llava-7b`, `llava-13b`. | +Multimodal: + --multimodal-pipeline MULTIMODAL_PIPELINE The multimodal pipeline to use. Examples: llava-7b, llava-13b. +``` diff --git a/docs/04 - Model Tab.md b/docs/04 - Model Tab.md index 7c168e89..f44eb964 100644 --- a/docs/04 - Model Tab.md +++ b/docs/04 - Model Tab.md @@ -64,14 +64,6 @@ Loads: GPTQ models. * **no_use_cuda_fp16**: On some systems, the performance can be very bad with this unset. Can usually be ignored. * **desc_act**: For ancient models without proper metadata, sets the model "act-order" parameter manually. Can usually be ignored. -### GPTQ-for-LLaMa - -Loads: GPTQ models. - -Ancient loader, the first one to implement 4-bit quantization. It works on older GPUs for which ExLlamaV2 and AutoGPTQ do not work, and it doesn't work with "act-order", so you should use it with simple 4-bit-128g models. - -* **pre_layer**: Used for CPU offloading. The higher the number, the more layers will be sent to the GPU. GPTQ-for-LLaMa CPU offloading was faster than the one implemented in AutoGPTQ the last time I checked. - ### llama.cpp Loads: GGUF models. Note: GGML models have been deprecated and do not work anymore. diff --git a/docs/05 - Training Tab.md b/docs/05 - Training Tab.md index 590117a3..eba62cb3 100644 --- a/docs/05 - Training Tab.md +++ b/docs/05 - Training Tab.md @@ -124,7 +124,7 @@ When you're running training, the WebUI's console window will log reports that i "Loss" in the world of AI training theoretically means "how close is the model to perfect", with `0` meaning "absolutely perfect". This is calculated by measuring the difference between the model outputting exactly the text you're training it to output, and what it actually outputs. -In practice, a good LLM should have a very complex variable range of ideas running in its artificial head, so a loss of `0` would indicate that the model has broken and forgotten to how think about anything other than what you trained it. +In practice, a good LLM should have a very complex variable range of ideas running in its artificial head, so a loss of `0` would indicate that the model has broken and forgotten how to think about anything other than what you trained it on. So, in effect, Loss is a balancing game: you want to get it low enough that it understands your data, but high enough that it isn't forgetting everything else. Generally, if it goes below `1.0`, it's going to start forgetting its prior memories, and you should stop training. In some cases you may prefer to take it as low as `0.5` (if you want it to be very very predictable). Different goals have different needs, so don't be afraid to experiment and see what works best for you. diff --git a/docs/08 - Additional Tips.md b/docs/08 - Additional Tips.md index f48fa862..079d1da0 100644 --- a/docs/08 - Additional Tips.md +++ b/docs/08 - Additional Tips.md @@ -13,28 +13,6 @@ Source: https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/1126 This file will be automatically detected the next time you start the web UI. -## Using LoRAs with GPTQ-for-LLaMa - -This requires using a monkey patch that is supported by this web UI: https://github.com/johnsmith0031/alpaca_lora_4bit - -To use it: - -Install alpaca_lora_4bit using pip - -``` -git clone https://github.com/johnsmith0031/alpaca_lora_4bit.git -cd alpaca_lora_4bit -git fetch origin winglian-setup_pip -git checkout winglian-setup_pip -pip install . -``` - -Start the UI with the --monkey-patch flag: - -``` -python server.py --model llama-7b-4bit-128g --listen --lora tloen_alpaca-lora-7b --monkey-patch -``` - ## DeepSpeed `DeepSpeed ZeRO-3` is an alternative offloading strategy for full-precision (16-bit) transformers models. diff --git a/docs/09 - Docker.md b/docs/09 - Docker.md index 406abcbf..eec8fafd 100644 --- a/docs/09 - Docker.md +++ b/docs/09 - Docker.md @@ -19,7 +19,7 @@ Use these commands to launch the image: ``` cd text-generation-webui -ln -s docker/{nvidia/Dockerfile,docker-compose.yml,.dockerignore} . +ln -s docker/{nvidia/Dockerfile,nvidia/docker-compose.yml,.dockerignore} . cp docker/.env.example .env # Edit .env and set TORCH_CUDA_ARCH_LIST based on your GPU model docker compose up --build diff --git a/docs/What Works.md b/docs/What Works.md index 6c0d4c84..80abdc7f 100644 --- a/docs/What Works.md +++ b/docs/What Works.md @@ -2,15 +2,13 @@ | Loader | Loading 1 LoRA | Loading 2 or more LoRAs | Training LoRAs | Multimodal extension | Perplexity evaluation | |----------------|----------------|-------------------------|----------------|----------------------|-----------------------| -| Transformers | ✅ | ✅\*\*\* | ✅\* | ✅ | ✅ | +| Transformers | ✅ | ✅\*\* | ✅\* | ✅ | ✅ | | llama.cpp | ❌ | ❌ | ❌ | ❌ | use llamacpp_HF | | llamacpp_HF | ❌ | ❌ | ❌ | ❌ | ✅ | | ExLlamav2_HF | ✅ | ✅ | ❌ | ❌ | ✅ | | ExLlamav2 | ✅ | ✅ | ❌ | ❌ | use ExLlamav2_HF | | AutoGPTQ | ✅ | ❌ | ❌ | ✅ | ✅ | | AutoAWQ | ? | ❌ | ? | ? | ✅ | -| GPTQ-for-LLaMa | ✅\*\* | ✅\*\*\* | ✅ | ✅ | ✅ | -| QuIP# | ? | ? | ? | ? | ✅ | | HQQ | ? | ? | ? | ? | ✅ | ❌ = not implemented @@ -19,6 +17,4 @@ \* Training LoRAs with GPTQ models also works with the Transformers loader. Make sure to check "auto-devices" and "disable_exllama" before loading the model. -\*\* Requires the monkey-patch. The instructions can be found [here](https://github.com/oobabooga/text-generation-webui/wiki/08-%E2%80%90-Additional-Tips#using-loras-with-gptq-for-llama). - -\*\*\* Multi-LoRA in PEFT is tricky and the current implementation does not work reliably in all cases. +\*\* Multi-LoRA in PEFT is tricky and the current implementation does not work reliably in all cases. diff --git a/download-model.py b/download-model.py index 465c76f9..08b23d08 100644 --- a/download-model.py +++ b/download-model.py @@ -167,8 +167,11 @@ class ModelDownloader: is_llamacpp = has_gguf and specific_file is not None return links, sha256, is_lora, is_llamacpp - def get_output_folder(self, model, branch, is_lora, is_llamacpp=False): - base_folder = 'models' if not is_lora else 'loras' + def get_output_folder(self, model, branch, is_lora, is_llamacpp=False, model_dir=None): + if model_dir: + base_folder = model_dir + else: + base_folder = 'models' if not is_lora else 'loras' # If the model is of type GGUF, save directly in the base_folder if is_llamacpp: @@ -304,7 +307,8 @@ if __name__ == '__main__': parser.add_argument('--threads', type=int, default=4, help='Number of files to download simultaneously.') parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).') parser.add_argument('--specific-file', type=str, default=None, help='Name of the specific file to download (if not provided, downloads all).') - parser.add_argument('--output', type=str, default=None, help='The folder where the model should be saved.') + parser.add_argument('--output', type=str, default=None, help='Save the model files to this folder.') + parser.add_argument('--model-dir', type=str, default=None, help='Save the model files to a subfolder of this folder instead of the default one (text-generation-webui/models).') parser.add_argument('--clean', action='store_true', help='Does not resume the previous download.') parser.add_argument('--check', action='store_true', help='Validates the checksums of model files.') parser.add_argument('--max-retries', type=int, default=5, help='Max retries count when get error in download time.') @@ -333,7 +337,7 @@ if __name__ == '__main__': if args.output: output_folder = Path(args.output) else: - output_folder = downloader.get_output_folder(model, branch, is_lora, is_llamacpp=is_llamacpp) + output_folder = downloader.get_output_folder(model, branch, is_lora, is_llamacpp=is_llamacpp, model_dir=args.model_dir) if args.check: # Check previously downloaded files diff --git a/extensions/openai/typing.py b/extensions/openai/typing.py index 9cd1c80e..6b7340c8 100644 --- a/extensions/openai/typing.py +++ b/extensions/openai/typing.py @@ -34,6 +34,10 @@ class GenerationOptions(BaseModel): seed: int = -1 encoder_repetition_penalty: float = 1 no_repeat_ngram_size: int = 0 + dry_multiplier: float = 0 + dry_base: float = 1.75 + dry_allowed_length: int = 2 + dry_sequence_breakers: str = '"\\n", ":", "\\"", "*"' truncation_length: int = 0 max_tokens_second: int = 0 prompt_lookup_num_tokens: int = 0 diff --git a/instruction-templates/Llama-v3.yaml b/instruction-templates/Llama-v3.yaml new file mode 100644 index 00000000..ba96c7e2 --- /dev/null +++ b/instruction-templates/Llama-v3.yaml @@ -0,0 +1,13 @@ +instruction_template: |- + {%- set ns = namespace(found=false) -%} + {%- for message in messages -%} + {%- if message['role'] == 'system' -%} + {%- set ns.found = true -%} + {%- endif -%} + {%- endfor -%} + {%- for message in messages -%} + {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n' + message['content'].rstrip() + '<|eot_id|>' -}} + {%- endfor -%} + {%- if add_generation_prompt -%} + {{-'<|start_header_id|>assistant<|end_header_id|>\n\n'-}} + {%- endif -%} diff --git a/modules/AutoGPTQ_loader.py b/modules/AutoGPTQ_loader.py index 514a6ee5..69e8f299 100644 --- a/modules/AutoGPTQ_loader.py +++ b/modules/AutoGPTQ_loader.py @@ -44,7 +44,7 @@ def load_quantized(model_name): 'model_basename': pt_path.stem, 'device': "xpu:0" if is_xpu_available() else "cuda:0" if not shared.args.cpu else "cpu", 'use_triton': shared.args.triton, - 'inject_fused_attention': not shared.args.no_inject_fused_attention, + 'inject_fused_attention': False, 'inject_fused_mlp': not shared.args.no_inject_fused_mlp, 'use_safetensors': use_safetensors, 'trust_remote_code': shared.args.trust_remote_code, diff --git a/modules/GPTQ_loader.py b/modules/GPTQ_loader.py deleted file mode 100644 index 601c58f3..00000000 --- a/modules/GPTQ_loader.py +++ /dev/null @@ -1,171 +0,0 @@ -import inspect -import re -from pathlib import Path - -import accelerate -import torch -import transformers -from accelerate.utils import is_xpu_available -from gptq_for_llama import llama_inference_offload -from gptq_for_llama.modelutils import find_layers -from gptq_for_llama.quant import make_quant -from transformers import AutoConfig, AutoModelForCausalLM - -import modules.shared as shared -from modules.logging_colors import logger - - -# This function is a replacement for the load_quant function in the -# GPTQ-for_LLaMa repository. It supports more models and branches. -def _load_quant(model, checkpoint, wbits, groupsize=-1, faster_kernel=False, exclude_layers=None, kernel_switch_threshold=128, eval=True): - exclude_layers = exclude_layers or ['lm_head'] - - def noop(*args, **kwargs): - pass - - config = AutoConfig.from_pretrained(model, trust_remote_code=shared.args.trust_remote_code) - torch.nn.init.kaiming_uniform_ = noop - torch.nn.init.uniform_ = noop - torch.nn.init.normal_ = noop - - torch.set_default_dtype(torch.half) - transformers.modeling_utils._init_weights = False - torch.set_default_dtype(torch.half) - model = AutoModelForCausalLM.from_config(config, trust_remote_code=shared.args.trust_remote_code) - torch.set_default_dtype(torch.float) - if eval: - model = model.eval() - - layers = find_layers(model) - for name in exclude_layers: - if name in layers: - del layers[name] - - gptq_args = inspect.getfullargspec(make_quant).args - - make_quant_kwargs = { - 'module': model, - 'names': layers, - 'bits': wbits, - } - if 'groupsize' in gptq_args: - make_quant_kwargs['groupsize'] = groupsize - if 'faster' in gptq_args: - make_quant_kwargs['faster'] = faster_kernel - if 'kernel_switch_threshold' in gptq_args: - make_quant_kwargs['kernel_switch_threshold'] = kernel_switch_threshold - - make_quant(**make_quant_kwargs) - - del layers - if checkpoint.endswith('.safetensors'): - from safetensors.torch import load_file as safe_load - model.load_state_dict(safe_load(checkpoint), strict=False) - else: - model.load_state_dict(torch.load(checkpoint, weights_only=True), strict=False) - - model.seqlen = 2048 - return model - - -# Used to locate the .pt/.safetensors quantized file -def find_quantized_model_file(model_name): - if shared.args.checkpoint: - return Path(shared.args.checkpoint) - - path_to_model = Path(f'{shared.args.model_dir}/{model_name}') - pt_path = None - priority_name_list = [ - Path(f'{shared.args.model_dir}/{model_name}{hyphen}{shared.args.wbits}bit{group}{ext}') - for group in ([f'-{shared.args.groupsize}g', ''] if shared.args.groupsize > 0 else ['']) - for ext in ['.safetensors', '.pt'] - for hyphen in ['-', f'/{model_name}-', '/'] - ] - - for path in priority_name_list: - if path.exists(): - pt_path = path - break - - # If the model hasn't been found with a well-behaved name, pick the last .pt - # or the last .safetensors found in its folder as a last resort - if not pt_path: - for ext in ['.pt', '.safetensors']: - found = list(path_to_model.glob(f"*{ext}")) - if len(found) > 0: - if len(found) > 1: - logger.warning(f'More than one {ext} model has been found. The last one will be selected. It could be wrong.') - - pt_path = found[-1] - break - - return pt_path - - -# The function that loads the model in modules/models.py -def load_quantized(model_name): - if shared.args.model_type is None: - logger.error("The model could not be loaded because its type could not be inferred from its name.") - logger.error("Please specify the type manually using the --model_type argument.") - return None - - # Select the appropriate load_quant function - model_type = shared.args.model_type.lower() - if shared.args.pre_layer and model_type == 'llama': - load_quant = llama_inference_offload.load_quant - elif model_type in ('llama', 'opt', 'gptj'): - if shared.args.pre_layer: - logger.warning("Ignoring --pre_layer because it only works for llama model type.") - - load_quant = _load_quant - else: - logger.error("Unknown pre-quantized model type specified. Only 'llama', 'opt' and 'gptj' are supported") - exit() - - # Find the quantized model weights file (.pt/.safetensors) - path_to_model = Path(f'{shared.args.model_dir}/{model_name}') - pt_path = find_quantized_model_file(model_name) - if not pt_path: - logger.error("Could not find the quantized model in .pt or .safetensors format. Exiting.") - exit() - else: - logger.info(f"Found the following quantized model: {pt_path}") - - # qwopqwop200's offload - if model_type == 'llama' and shared.args.pre_layer: - if len(shared.args.pre_layer) == 1: - pre_layer = shared.args.pre_layer[0] - else: - pre_layer = shared.args.pre_layer - - model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize, pre_layer) - else: - threshold = False if model_type == 'gptj' else 128 - model = load_quant(str(path_to_model), str(pt_path), shared.args.wbits, shared.args.groupsize, kernel_switch_threshold=threshold) - - # accelerate offload (doesn't work properly) - if shared.args.gpu_memory or torch.cuda.device_count() > 1 or (is_xpu_available() and torch.xpu.device_count() > 1): - if shared.args.gpu_memory: - memory_map = list(map(lambda x: x.strip(), shared.args.gpu_memory)) - max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB' - max_memory = {} - for i in range(len(memory_map)): - max_memory[i] = f'{memory_map[i]}GiB' if not re.match('.*ib$', memory_map[i].lower()) else memory_map[i] - - max_memory['cpu'] = f'{max_cpu_memory}GiB' if not re.match('.*ib$', max_cpu_memory.lower()) else max_cpu_memory - else: - max_memory = accelerate.utils.get_balanced_memory(model) - - device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LlamaDecoderLayer"]) - logger.info("Using the following device map for the quantized model:", device_map) - # https://huggingface.co/docs/accelerate/package_reference/big_modeling#accelerate.dispatch_model - model = accelerate.dispatch_model(model, device_map=device_map, offload_buffers=True) - - # No offload - elif not shared.args.cpu: - if is_xpu_available(): - model = model.to(torch.device("xpu:0")) - else: - model = model.to(torch.device('cuda:0')) - - return model diff --git a/modules/chat.py b/modules/chat.py index 4e0bde1c..43f5466b 100644 --- a/modules/chat.py +++ b/modules/chat.py @@ -308,9 +308,6 @@ def chatbot_wrapper(text, state, regenerate=False, _continue=False, loading_mess 'internal': output['internal'] } - if shared.model_name == 'None' or shared.model is None: - raise ValueError("No model is loaded! Select one in the Model tab.") - # Generate the prompt kwargs = { '_continue': _continue, @@ -355,11 +352,6 @@ def impersonate_wrapper(text, state): static_output = chat_html_wrapper(state['history'], state['name1'], state['name2'], state['mode'], state['chat_style'], state['character_menu']) - if shared.model_name == 'None' or shared.model is None: - logger.error("No model is loaded! Select one in the Model tab.") - yield '', static_output - return - prompt = generate_chat_prompt('', state, impersonate=True) stopping_strings = get_stopping_strings(state) diff --git a/modules/grammar/grammar_utils.py b/modules/grammar/grammar_utils.py index 4b37c24a..7f09ff82 100644 --- a/modules/grammar/grammar_utils.py +++ b/modules/grammar/grammar_utils.py @@ -60,7 +60,7 @@ def hex_to_int(c): return int(c) elif "a" <= c.lower() <= "f": return ord(c.lower()) - ord("a") + 10 - return -1 + raise RuntimeError("unknown hex char " + c) def remove_leading_white_space(src, newline_ok): @@ -100,6 +100,13 @@ def parse_name(src): return src[:pos], src[pos:] +def read_hex(s): + val = 0 + for c in s: + val = (val << 4) + hex_to_int(c) + return chr(val) + + def parse_char(src): """ parse the leading char from the input string @@ -111,13 +118,12 @@ def parse_char(src): if src[0] == "\\": esc = src[1] if esc == "x": - first = hex_to_int(src[2]) - if first > -1: - second = hex_to_int(src[3]) - if second > -1: - return (first << 4) + second, src[4:] - raise RuntimeError("expecting \\xNN at " + src) - elif esc in ('"', "[", "]"): + return read_hex(src[2:4]), src[4:] + elif esc == "u": + return read_hex(src[2:6]), src[6:] + elif esc == "U": + return read_hex(src[2:10]), src[10:] + elif esc in ('"', "[", "]", "\\", "-"): return esc, src[2:] elif esc == "r": return "\r", src[2:] @@ -125,6 +131,8 @@ def parse_char(src): return "\n", src[2:] elif esc == "t": return "\t", src[2:] + elif esc == "\\": + return "\\", src[2:] raise RuntimeError("unknown escape at " + src) elif src: return src[0], src[1:] @@ -454,7 +462,8 @@ class IncrementalGrammarConstraint(GrammarConstraint): def __init__(self, grammar_str, start_rule_name, tokenizer): super().__init__(grammar_str, start_rule_name, tokenizer) - def accept_char(self, byte, stacks): + def accept_char(self, char, stacks): + byte = ord(char) new_stacks = [] for stack in stacks: # stack is empty @@ -471,6 +480,9 @@ class IncrementalGrammarConstraint(GrammarConstraint): if self.grammar_encoding[pos + i] <= byte and byte <= self.grammar_encoding[pos + i + 1]: found = True break + if self.grammar_encoding[pos + i] >= byte and byte >= self.grammar_encoding[pos + i + 1]: + found = True + break if not found: continue @@ -483,9 +495,8 @@ class IncrementalGrammarConstraint(GrammarConstraint): return new_stacks def accept_string(self, string: str, stacks: List[List[int]]): - _bytes = bytes(string, "utf-8") - for byte in _bytes: - stacks = self.accept_char(byte, stacks) + for char in string: + stacks = self.accept_char(char, stacks) return stacks def accept_token_id(self, token_id: int, stacks: List[List[int]]): @@ -537,16 +548,18 @@ class IncrementalGrammarConstraint(GrammarConstraint): # For each sub-rule in the grammar, cache whether each byte is accepted. @lru_cache(maxsize=None) - def pos_char_acceptance(self, pos): - acceptance = [False] * 256 + def pos_char_acceptance(self, pos, char): + byte = ord(char) num_chars = self.grammar_encoding[pos] pos += 1 for i in range(0, num_chars, 2): start = self.grammar_encoding[pos + i] end = self.grammar_encoding[pos + i + 1] - for j in range(start, end + 1): - acceptance[j] = True - return acceptance + if byte >= start and byte <= end: + return True + if byte <= start and byte >= end: + return True + return False # Probably this should be configurable. If the grammar has an exceedingly # large number of states, the correct setting is a tradeoff between GPU @@ -580,7 +593,7 @@ class IncrementalGrammarConstraint(GrammarConstraint): pos = stk[-1] num_chars = self.grammar_encoding[pos] - if not self.pos_char_acceptance(pos)[byte]: + if not self.pos_char_acceptance(pos, byte): continue pos += num_chars + 1 @@ -657,14 +670,14 @@ class TokenTrie: token = tokenizer.convert_ids_to_tokens(id) token = re.sub(r"<0x([0-9a-fA-F]{2})>", replace_hex, token) token = token.replace("▁", " ") - return bytes(token, "utf-8") + return token else: print("Warning: unrecognized tokenizer: using default token formatting") def fmt_token(id): token = tokenizer.convert_ids_to_tokens(id) - return bytes(token, "utf-8") + return token # note: vocab_size doesn't work here because there are also # get_added_vocab() tokens diff --git a/modules/loaders.py b/modules/loaders.py index e7ff2d21..cd9d0f88 100644 --- a/modules/loaders.py +++ b/modules/loaders.py @@ -105,7 +105,6 @@ loaders_and_params = OrderedDict({ ], 'AutoGPTQ': [ 'triton', - 'no_inject_fused_attention', 'no_inject_fused_mlp', 'no_use_cuda_fp16', 'wbits', @@ -131,21 +130,6 @@ loaders_and_params = OrderedDict({ 'trust_remote_code', 'no_use_fast', ], - 'GPTQ-for-LLaMa': [ - 'wbits', - 'groupsize', - 'model_type', - 'pre_layer', - 'trust_remote_code', - 'no_use_fast', - 'gptq_for_llama_info', - ], - 'QuIP#': [ - 'trust_remote_code', - 'no_use_fast', - 'no_flash_attn', - 'quipsharp_info', - ], 'HQQ': [ 'hqq_backend', 'trust_remote_code', @@ -178,6 +162,10 @@ def transformers_samplers(): 'repetition_penalty_range', 'encoder_repetition_penalty', 'no_repeat_ngram_size', + 'dry_multiplier', + 'dry_base', + 'dry_allowed_length', + 'dry_sequence_breakers', 'seed', 'do_sample', 'penalty_alpha', @@ -201,9 +189,7 @@ def transformers_samplers(): loaders_samplers = { 'Transformers': transformers_samplers(), 'AutoGPTQ': transformers_samplers(), - 'GPTQ-for-LLaMa': transformers_samplers(), 'AutoAWQ': transformers_samplers(), - 'QuIP#': transformers_samplers(), 'HQQ': transformers_samplers(), 'ExLlamav2': { 'temperature', @@ -251,6 +237,10 @@ loaders_samplers = { 'repetition_penalty_range', 'encoder_repetition_penalty', 'no_repeat_ngram_size', + 'dry_multiplier', + 'dry_base', + 'dry_allowed_length', + 'dry_sequence_breakers', 'seed', 'do_sample', 'mirostat_mode', @@ -309,6 +299,10 @@ loaders_samplers = { 'repetition_penalty_range', 'encoder_repetition_penalty', 'no_repeat_ngram_size', + 'dry_multiplier', + 'dry_base', + 'dry_allowed_length', + 'dry_sequence_breakers', 'seed', 'do_sample', 'mirostat_mode', @@ -327,15 +321,6 @@ loaders_samplers = { }, } -loaders_model_types = { - 'GPTQ-for-LLaMa': [ - "None", - "llama", - "opt", - "gptj" - ], -} - @functools.cache def list_all_samplers(): @@ -363,13 +348,6 @@ def blacklist_samplers(loader, dynamic_temperature): return output -def get_model_types(loader): - if loader in loaders_model_types: - return loaders_model_types[loader] - - return ["None"] - - def get_gpu_memory_keys(): return [k for k in shared.gradio if k.startswith('gpu_memory')] diff --git a/modules/logits.py b/modules/logits.py index f2fd233b..1fe2e73e 100644 --- a/modules/logits.py +++ b/modules/logits.py @@ -1,14 +1,34 @@ +import time +import traceback + import torch from transformers import is_torch_npu_available, is_torch_xpu_available -from modules import sampler_hijack, shared +from modules import models, sampler_hijack, shared from modules.logging_colors import logger +from modules.models import load_model from modules.text_generation import generate_reply global_scores = None -def get_next_logits(prompt, state, use_samplers, previous, top_logits=25, return_dict=False): +def get_next_logits(*args, **kwargs): + if shared.args.idle_timeout > 0 and shared.model is None and shared.previous_model_name not in [None, 'None']: + shared.model, shared.tokenizer = load_model(shared.previous_model_name) + + shared.generation_lock.acquire() + try: + result = _get_next_logits(*args, **kwargs) + except Exception: + traceback.print_exc() + result = None + + models.last_generation_time = time.time() + shared.generation_lock.release() + return result + + +def _get_next_logits(prompt, state, use_samplers, previous, top_logits=25, return_dict=False): if shared.model is None: logger.error("No model is loaded! Select one in the Model tab.") return 'Error: No model is loaded1 Select one in the Model tab.', previous @@ -66,7 +86,14 @@ def get_next_logits(prompt, state, use_samplers, previous, top_logits=25, return topk_values = [float(i) for i in topk_values] output = {} for row in list(zip(topk_values, tokens)): - output[row[1]] = row[0] + key = row[1] + if isinstance(key, bytes): + try: + key = key.decode() + except: + key = key.decode('latin') + + output[key] = row[0] return output else: diff --git a/modules/models.py b/modules/models.py index 687af8ba..b1d0b1cb 100644 --- a/modules/models.py +++ b/modules/models.py @@ -61,6 +61,9 @@ if shared.args.deepspeed: sampler_hijack.hijack_samplers() +last_generation_time = time.time() + + def load_model(model_name, loader=None): logger.info(f"Loading \"{model_name}\"") t0 = time.time() @@ -70,13 +73,11 @@ def load_model(model_name, loader=None): load_func_map = { 'Transformers': huggingface_loader, 'AutoGPTQ': AutoGPTQ_loader, - 'GPTQ-for-LLaMa': GPTQ_loader, 'llama.cpp': llamacpp_loader, 'llamacpp_HF': llamacpp_HF_loader, 'ExLlamav2': ExLlamav2_loader, 'ExLlamav2_HF': ExLlamav2_HF_loader, 'AutoAWQ': AutoAWQ_loader, - 'QuIP#': QuipSharp_loader, 'HQQ': HQQ_loader, } @@ -266,7 +267,7 @@ def llamacpp_loader(model_name): if path.is_file(): model_file = path else: - model_file = list(Path(f'{shared.args.model_dir}/{model_name}').glob('*.gguf'))[0] + model_file = sorted(Path(f'{shared.args.model_dir}/{model_name}').glob('*.gguf'))[0] logger.info(f"llama.cpp weights detected: \"{model_file}\"") model, tokenizer = LlamaCppModel.from_pretrained(model_file) @@ -307,55 +308,6 @@ def AutoAWQ_loader(model_name): return model -def QuipSharp_loader(model_name): - try: - with RelativeImport("repositories/quip-sharp"): - from lib.utils.unsafe_import import model_from_hf_path - except: - logger.error( - "\nQuIP# has not been found. It must be installed manually for now.\n" - "For instructions on how to do that, please consult:\n" - "https://github.com/oobabooga/text-generation-webui/pull/4803\n" - ) - return None, None - - # This fixes duplicate logging messages after the import above. - handlers = logging.getLogger().handlers - if len(handlers) > 1: - logging.getLogger().removeHandler(handlers[1]) - - model_dir = Path(f'{shared.args.model_dir}/{model_name}') - if not all((model_dir / file).exists() for file in ['tokenizer_config.json', 'special_tokens_map.json', 'tokenizer.model']): - logger.error(f"Could not load the model because the tokenizer files could not be found in the model folder. Please download the following files from the original (unquantized) model into {model_dir}: special_tokens_map.json, tokenizer.json, tokenizer.model, tokenizer_config.json.") - return None, None - - model, model_str = model_from_hf_path( - model_dir, - use_cuda_graph=False, - use_flash_attn=not shared.args.no_flash_attn - ) - - return model - - -def GPTQ_loader(model_name): - - # Monkey patch - if shared.args.monkey_patch: - logger.warning("Applying the monkey patch for using LoRAs with GPTQ models. It may cause undefined behavior outside its intended scope.") - from modules.monkey_patch_gptq_lora import load_model_llama - - model, _ = load_model_llama(model_name) - - # No monkey patch - else: - import modules.GPTQ_loader - - model = modules.GPTQ_loader.load_quantized(model_name) - - return model - - def AutoGPTQ_loader(model_name): import modules.AutoGPTQ_loader @@ -377,12 +329,12 @@ def ExLlamav2_HF_loader(model_name): def HQQ_loader(model_name): from hqq.core.quantize import HQQBackend, HQQLinear - from hqq.engine.hf import HQQModelForCausalLM + from hqq.models.hf.base import AutoHQQHFModel logger.info(f"Loading HQQ model with backend: \"{shared.args.hqq_backend}\"") model_dir = Path(f'{shared.args.model_dir}/{model_name}') - model = HQQModelForCausalLM.from_quantized(str(model_dir)) + model = AutoHQQHFModel.from_quantized(str(model_dir)) HQQLinear.set_backend(getattr(HQQBackend, shared.args.hqq_backend)) return model @@ -428,6 +380,7 @@ def clear_torch_cache(): def unload_model(): shared.model = shared.tokenizer = None + shared.previous_model_name = shared.model_name shared.model_name = 'None' shared.lora_names = [] shared.model_dirty_from_training = False @@ -437,3 +390,21 @@ def unload_model(): def reload_model(): unload_model() shared.model, shared.tokenizer = load_model(shared.model_name) + + +def unload_model_if_idle(): + global last_generation_time + + logger.info(f"Setting a timeout of {shared.args.idle_timeout} minutes to unload the model in case of inactivity.") + + while True: + shared.generation_lock.acquire() + try: + if time.time() - last_generation_time > shared.args.idle_timeout * 60: + if shared.model is not None: + logger.info("Unloading the model for inactivity.") + unload_model() + finally: + shared.generation_lock.release() + + time.sleep(60) diff --git a/modules/models_settings.py b/modules/models_settings.py index a7fed427..2d161ad5 100644 --- a/modules/models_settings.py +++ b/modules/models_settings.py @@ -12,7 +12,6 @@ def get_fallback_settings(): 'wbits': 'None', 'groupsize': 'None', 'desc_act': False, - 'model_type': 'None', 'max_seq_len': 2048, 'n_ctx': 2048, 'rope_freq_base': 0, @@ -40,12 +39,7 @@ def get_model_metadata(model): hf_metadata = None if 'loader' not in model_settings: - if hf_metadata is not None and 'quip_params' in hf_metadata: - loader = 'QuIP#' - else: - loader = infer_loader(model, model_settings) - - model_settings['loader'] = loader + model_settings['loader'] = infer_loader(model, model_settings) # GGUF metadata if model_settings['loader'] in ['llama.cpp', 'llamacpp_HF']: @@ -56,6 +50,7 @@ def get_model_metadata(model): model_file = list(path.glob('*.gguf'))[0] metadata = metadata_gguf.load_metadata(model_file) + for k in metadata: if k.endswith('context_length'): model_settings['n_ctx'] = metadata[k] @@ -63,6 +58,9 @@ def get_model_metadata(model): model_settings['rope_freq_base'] = metadata[k] elif k.endswith('rope.scale_linear'): model_settings['compress_pos_emb'] = metadata[k] + elif k.endswith('block_count'): + model_settings['n_gpu_layers'] = metadata[k] + 1 + if 'tokenizer.chat_template' in metadata: template = metadata['tokenizer.chat_template'] eos_token = metadata['tokenizer.ggml.tokens'][metadata['tokenizer.ggml.eos_token_id']] @@ -200,7 +198,7 @@ def update_model_parameters(state, initial=False): continue # Setting null defaults - if element in ['wbits', 'groupsize', 'model_type'] and value == 'None': + if element in ['wbits', 'groupsize'] and value == 'None': value = vars(shared.args_defaults)[element] elif element in ['cpu_memory'] and value == 0: value = vars(shared.args_defaults)[element] @@ -238,7 +236,7 @@ def apply_model_settings_to_state(model, state): loader = model_settings.pop('loader') # If the user is using an alternative loader for the same model type, let them keep using it - if not (loader == 'ExLlamav2_HF' and state['loader'] in ['GPTQ-for-LLaMa', 'ExLlamav2', 'AutoGPTQ']): + if not (loader == 'ExLlamav2_HF' and state['loader'] in ['ExLlamav2', 'AutoGPTQ']): state['loader'] = loader for k in model_settings: diff --git a/modules/monkey_patch_gptq_lora.py b/modules/monkey_patch_gptq_lora.py deleted file mode 100644 index 3166bd33..00000000 --- a/modules/monkey_patch_gptq_lora.py +++ /dev/null @@ -1,39 +0,0 @@ -# Copied from https://github.com/johnsmith0031/alpaca_lora_4bit - -from pathlib import Path - -import alpaca_lora_4bit.autograd_4bit as autograd_4bit -from alpaca_lora_4bit.amp_wrapper import AMPWrapper -from alpaca_lora_4bit.autograd_4bit import ( - Autograd4bitQuantLinear, - load_llama_model_4bit_low_ram -) -from alpaca_lora_4bit.models import Linear4bitLt -from alpaca_lora_4bit.monkeypatch.peft_tuners_lora_monkey_patch import ( - replace_peft_model_with_int4_lora_model -) - -from modules import shared -from modules.GPTQ_loader import find_quantized_model_file - -replace_peft_model_with_int4_lora_model() - - -def load_model_llama(model_name): - config_path = str(Path(f'{shared.args.model_dir}/{model_name}')) - model_path = str(find_quantized_model_file(model_name)) - model, tokenizer = load_llama_model_4bit_low_ram(config_path, model_path, groupsize=shared.args.groupsize, is_v1_model=False) - for _, m in model.named_modules(): - if isinstance(m, Autograd4bitQuantLinear) or isinstance(m, Linear4bitLt): - if m.is_v1_model: - m.zeros = m.zeros.half() - m.scales = m.scales.half() - m.bias = m.bias.half() - - autograd_4bit.auto_switch = True - - model.half() - wrapper = AMPWrapper(model) - wrapper.apply_generate() - - return model, tokenizer diff --git a/modules/presets.py b/modules/presets.py index a7cda31c..b00e829e 100644 --- a/modules/presets.py +++ b/modules/presets.py @@ -40,6 +40,10 @@ def default_preset(): 'do_sample': True, 'encoder_repetition_penalty': 1, 'no_repeat_ngram_size': 0, + 'dry_multiplier': 0, + 'dry_base': 1.75, + 'dry_allowed_length': 2, + 'dry_sequence_breakers': '"\\n", ":", "\\"", "*"', 'sampler_priority': 'temperature\ndynamic_temperature\nquadratic_sampling\ntop_k\ntop_p\ntypical_p\nepsilon_cutoff\neta_cutoff\ntfs\ntop_a\nmin_p\nmirostat' } diff --git a/modules/sampler_hijack.py b/modules/sampler_hijack.py index da52f4d0..55d1997b 100644 --- a/modules/sampler_hijack.py +++ b/modules/sampler_hijack.py @@ -1,3 +1,4 @@ +import json import math import pprint @@ -124,36 +125,6 @@ class QuadraticSamplingLogitsWarper(LogitsWarper): return transformed_logits -class MinPLogitsWarper(LogitsWarper): - def __init__(self, min_p: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1): - if min_p < 0 or min_p > 1.0: - raise ValueError(f"`min_p` has to be a float >= 0 and <= 1, but is {min_p}") - self.min_p = min_p - self.filter_value = filter_value - self.min_tokens_to_keep = min_tokens_to_keep - - def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: - # Convert logits to probabilities - probs = torch.softmax(scores, dim=-1) - # Get the probability of the top token for each sequence in the batch - top_probs, _ = probs.max(dim=-1, keepdim=True) - # Calculate the actual min_p threshold by scaling min_p with the top token's probability - scaled_min_p = self.min_p * top_probs - # Create a mask for tokens that have a probability less than the scaled min_p - tokens_to_remove = probs < scaled_min_p - - sorted_indices = torch.argsort(scores, descending=True, dim=-1) - sorted_indices_to_remove = torch.gather(tokens_to_remove, dim=-1, index=sorted_indices) - - if self.min_tokens_to_keep > 1: - # Keep at least min_tokens_to_keep - sorted_indices_to_remove[..., : self.min_tokens_to_keep] = False - - indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) - scores = scores.masked_fill(indices_to_remove, self.filter_value) - return scores - - class TailFreeLogitsWarper(LogitsWarper): def __init__(self, tfs: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1): tfs = float(tfs) @@ -220,6 +191,74 @@ class TopALogitsWarper(LogitsWarper): return scores +class DRYLogitsProcessor(LogitsProcessor): + def __init__(self, multiplier: float, base: float, allowed_length: int, sequence_breakers: set[int], _range: int): + self.multiplier = multiplier + self.base = base + self.allowed_length = allowed_length + self.sequence_breakers = sequence_breakers + self._range = _range + + def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: + if self._range > 0: + input_ids = input_ids[:, -self._range:] + + for input_ids_row, scores_row in zip(input_ids, scores): + # Raw integer must be extracted here to check for set membership. + last_token = input_ids_row[-1].item() + + if last_token in self.sequence_breakers: + continue + + # Exclude the last token as it always matches. + match_indices = (input_ids_row[:-1] == last_token).nonzero() + + # Stores the maximum matching sequence length + # for each token immediately following the sequence in the input. + match_lengths = {} + + for i in match_indices: + next_token = input_ids_row[i+1].item() + + if next_token in self.sequence_breakers: + continue + + # We have already found that `last_token` matches at this index, + # so the match is at least of length 1. + match_length = 1 + + # Extend the match backwards as far as possible. + while True: + j = i - match_length + if j < 0: + # Start of input reached. + break + + previous_token = input_ids_row[-(match_length+1)].item() + if input_ids_row[j] != previous_token: + # Start of match reached. + break + + if previous_token in self.sequence_breakers: + # Sequence-breaking token reached. + break + + match_length += 1 + + if next_token in match_lengths: + match_lengths[next_token] = max(match_length, match_lengths[next_token]) + else: + match_lengths[next_token] = match_length + + # Apply penalties. + for token, match_length in match_lengths.items(): + if match_length >= self.allowed_length: + penalty = self.multiplier * self.base ** (match_length - self.allowed_length) + scores_row[token] -= penalty + + return scores + + class MirostatLogitsWarper(LogitsWarper): def __init__(self, mirostat_mode: int, mirostat_tau: float, mirostat_eta: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1): if mirostat_mode not in [2]: @@ -352,14 +391,6 @@ def get_logits_warper_patch(self, generation_config): ) ) - if generation_config.min_p is not None and 0.0 < generation_config.min_p <= 1.0: - warpers_to_add.append( - MinPLogitsWarper( - min_p=generation_config.min_p, - min_tokens_to_keep=min_tokens_to_keep - ) - ) - if generation_config.dynamic_temperature: warpers_to_add.append( DynamicTemperatureLogitsWarper( @@ -448,20 +479,44 @@ def get_logits_warper_patch(self, generation_config): def get_logits_processor_patch(self, **kwargs): - repetition_penalty = kwargs['generation_config'].repetition_penalty - presence_penalty = kwargs['generation_config'].presence_penalty - frequency_penalty = kwargs['generation_config'].frequency_penalty - repetition_penalty_range = kwargs['generation_config'].repetition_penalty_range - do_rep_pen_hijack = (repetition_penalty > 1) or (presence_penalty != 0) or (frequency_penalty != 0) + generation_config = kwargs['generation_config'] + + do_rep_pen_hijack = (generation_config.repetition_penalty > 1) or (generation_config.presence_penalty != 0) or (generation_config.frequency_penalty != 0) if do_rep_pen_hijack: - kwargs['generation_config'].repetition_penalty = 1.1 # Set to value > 1 to ensure RepetitionPenaltyLogitsProcessor is created + generation_config.repetition_penalty = 1.1 # Set to value > 1 to ensure RepetitionPenaltyLogitsProcessor is created result = self._get_logits_processor_old(**kwargs) if do_rep_pen_hijack: for i in range(len(result)): if result[i].__class__.__name__ == 'RepetitionPenaltyLogitsProcessor': - result[i] = RepetitionPenaltyLogitsProcessorWithRange(repetition_penalty, presence_penalty, frequency_penalty, repetition_penalty_range) + result[i] = RepetitionPenaltyLogitsProcessorWithRange( + generation_config.repetition_penalty, + generation_config.presence_penalty, + generation_config.frequency_penalty, + generation_config.repetition_penalty_range + ) + + if generation_config.dry_multiplier is not None and generation_config.dry_multiplier > 0.0: + dry_sequence_breakers = generation_config.dry_sequence_breakers + + # Support both JSON array notation and comma-separated strings. + if not dry_sequence_breakers.startswith("["): + dry_sequence_breakers = "[" + dry_sequence_breakers + "]" + + sequence_breaker_strings = json.loads(dry_sequence_breakers) + # Prefix with 'a' to get the correct encoding of the token at the end of a text. + sequence_breakers = {shared.tokenizer.encode(f'a{s}')[-1] for s in sequence_breaker_strings} + + result.append( + DRYLogitsProcessor( + multiplier=generation_config.dry_multiplier, + base=generation_config.dry_base, + allowed_length=generation_config.dry_allowed_length, + sequence_breakers=sequence_breakers, + _range=generation_config.repetition_penalty_range, + ) + ) return result @@ -483,6 +538,10 @@ def generation_config_init_patch(self, **kwargs): self.repetition_penalty_range = kwargs.pop("repetition_penalty_range", 0) self.presence_penalty = kwargs.pop("presence_penalty", 0) self.frequency_penalty = kwargs.pop("frequency_penalty", 0) + self.dry_multiplier = kwargs.pop("dry_multiplier", 0.0) + self.dry_base = kwargs.pop("dry_base", 1.75) + self.dry_allowed_length = kwargs.pop("dry_allowed_length", 2) + self.dry_sequence_breakers = kwargs.pop("dry_sequence_breakers", '"\\n", ":", "\\"", "*"') self.temperature_last = kwargs.pop("temperature_last", False) self.sampler_priority = kwargs.pop("sampler_priority", ['temperature', 'dynamic_temperature', 'quadratic_sampling', 'top_k', 'top_p', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'tfs', 'top_a', 'min_p', 'mirostat']) diff --git a/modules/shared.py b/modules/shared.py index a3ce584c..373089dc 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -13,6 +13,7 @@ from modules.logging_colors import logger model = None tokenizer = None model_name = 'None' +previous_model_name = 'None' is_seq2seq = False model_dirty_from_training = False lora_names = [] @@ -84,10 +85,11 @@ group.add_argument('--settings', type=str, help='Load the default interface sett group.add_argument('--extensions', type=str, nargs='+', help='The list of extensions to load. If you want to load more than one extension, write the names separated by spaces.') group.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.') group.add_argument('--chat-buttons', action='store_true', help='Show buttons on the chat tab instead of a hover menu.') +group.add_argument('--idle-timeout', type=int, default=0, help='Unload model after this many minutes of inactivity. It will be automatically reloaded when you try to use it again.') # Model loader group = parser.add_argument_group('Model loader') -group.add_argument('--loader', type=str, help='Choose the model loader manually, otherwise, it will get autodetected. Valid options: Transformers, llama.cpp, llamacpp_HF, ExLlamav2_HF, ExLlamav2, AutoGPTQ, AutoAWQ, GPTQ-for-LLaMa, QuIP#.') +group.add_argument('--loader', type=str, help='Choose the model loader manually, otherwise, it will get autodetected. Valid options: Transformers, llama.cpp, llamacpp_HF, ExLlamav2_HF, ExLlamav2, AutoGPTQ, AutoAWQ.') # Transformers/Accelerate group = parser.add_argument_group('Transformers/Accelerate') @@ -147,21 +149,17 @@ group.add_argument('--num_experts_per_token', type=int, default=2, help='Number # AutoGPTQ group = parser.add_argument_group('AutoGPTQ') group.add_argument('--triton', action='store_true', help='Use triton.') -group.add_argument('--no_inject_fused_attention', action='store_true', help='Disable the use of fused attention, which will use less VRAM at the cost of slower inference.') group.add_argument('--no_inject_fused_mlp', action='store_true', help='Triton mode only: disable the use of fused MLP, which will use less VRAM at the cost of slower inference.') group.add_argument('--no_use_cuda_fp16', action='store_true', help='This can make models faster on some systems.') group.add_argument('--desc_act', action='store_true', help='For models that do not have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig.') group.add_argument('--disable_exllama', action='store_true', help='Disable ExLlama kernel, which can improve inference speed on some systems.') group.add_argument('--disable_exllamav2', action='store_true', help='Disable ExLlamav2 kernel.') - -# GPTQ-for-LLaMa -group = parser.add_argument_group('GPTQ-for-LLaMa') group.add_argument('--wbits', type=int, default=0, help='Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported.') -group.add_argument('--model_type', type=str, help='Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported.') group.add_argument('--groupsize', type=int, default=-1, help='Group size.') -group.add_argument('--pre_layer', type=int, nargs='+', help='The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models. For multi-gpu, write the numbers separated by spaces, eg --pre_layer 30 60.') -group.add_argument('--checkpoint', type=str, help='The path to the quantized checkpoint file. If not specified, it will be automatically detected.') -group.add_argument('--monkey-patch', action='store_true', help='Apply the monkey patch for using LoRAs with quantized models.') + +# AutoAWQ +group = parser.add_argument_group('AutoAWQ') +group.add_argument('--no_inject_fused_attention', action='store_true', help='Disable the use of fused attention, which will use less VRAM at the cost of slower inference.') # HQQ group = parser.add_argument_group('HQQ') @@ -206,7 +204,11 @@ group = parser.add_argument_group('Multimodal') group.add_argument('--multimodal-pipeline', type=str, default=None, help='The multimodal pipeline to use. Examples: llava-7b, llava-13b.') # Deprecated parameters -# group = parser.add_argument_group('Deprecated') +group = parser.add_argument_group('Deprecated') +group.add_argument('--model_type', type=str, help='DEPRECATED') +group.add_argument('--pre_layer', type=int, nargs='+', help='DEPRECATED') +group.add_argument('--checkpoint', type=str, help='DEPRECATED') +group.add_argument('--monkey-patch', action='store_true', help='DEPRECATED') args = parser.parse_args() args_defaults = parser.parse_args([]) @@ -251,8 +253,6 @@ def fix_loader_name(name): return 'Transformers' elif name in ['autogptq', 'auto-gptq', 'auto_gptq', 'auto gptq']: return 'AutoGPTQ' - elif name in ['gptq-for-llama', 'gptqforllama', 'gptqllama', 'gptq for llama', 'gptq_for_llama']: - return 'GPTQ-for-LLaMa' elif name in ['exllama', 'ex-llama', 'ex_llama', 'exlama']: return 'ExLlama' elif name in ['exllamav2', 'exllama-v2', 'ex_llama-v2', 'exlamav2', 'exlama-v2', 'exllama2', 'exllama-2']: @@ -261,8 +261,6 @@ def fix_loader_name(name): return 'ExLlamav2_HF' elif name in ['autoawq', 'awq', 'auto-awq']: return 'AutoAWQ' - elif name in ['quip#', 'quip-sharp', 'quipsharp', 'quip_sharp']: - return 'QuIP#' elif name in ['hqq']: return 'HQQ' diff --git a/modules/text_generation.py b/modules/text_generation.py index 17ec6bd8..4f324239 100644 --- a/modules/text_generation.py +++ b/modules/text_generation.py @@ -16,6 +16,7 @@ from transformers import ( ) import modules.shared as shared +from modules import models from modules.cache_utils import process_llamacpp_cache from modules.callbacks import ( Iteratorize, @@ -27,15 +28,19 @@ from modules.grammar.grammar_utils import initialize_grammar from modules.grammar.logits_process import GrammarConstrainedLogitsProcessor from modules.html_generator import generate_basic_html from modules.logging_colors import logger -from modules.models import clear_torch_cache +from modules.models import clear_torch_cache, load_model def generate_reply(*args, **kwargs): + if shared.args.idle_timeout > 0 and shared.model is None and shared.previous_model_name not in [None, 'None']: + shared.model, shared.tokenizer = load_model(shared.previous_model_name) + shared.generation_lock.acquire() try: for result in _generate_reply(*args, **kwargs): yield result finally: + models.last_generation_time = time.time() shared.generation_lock.release() @@ -56,8 +61,7 @@ def _generate_reply(question, state, stopping_strings=None, is_chat=False, escap if generate_func != generate_reply_HF and shared.args.verbose: logger.info("PROMPT=") - print(question) - print() + print_prompt(question) # Prepare the input original_question = question @@ -134,9 +138,21 @@ def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_lengt input_ids = np.array(input_ids).reshape(1, len(input_ids)) else: input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', add_special_tokens=add_special_tokens) - if not add_bos_token: - while len(input_ids[0]) > 0 and input_ids[0][0] == shared.tokenizer.bos_token_id: - input_ids = input_ids[:, 1:] + + if hasattr(shared.tokenizer, 'bos_token_id'): + if add_bos_token: + if (len(input_ids[0]) > 0 and input_ids[0][0] != shared.tokenizer.bos_token_id) or len(input_ids[0]) == 0: + # Add a missing bos token (it may not have been added due to faulty model metadata) + bos_tensor = torch.tensor([[shared.tokenizer.bos_token_id]]) + input_ids = torch.cat((bos_tensor, input_ids), 1) + + # Prevent double bos token due to jinja templates with somewhere + while len(input_ids[0]) > 1 and input_ids[0][0] == shared.tokenizer.bos_token_id and input_ids[0][1] == shared.tokenizer.bos_token_id: + input_ids = input_ids[:, 1:] + else: + # Remove any bos token that may have been added + while len(input_ids[0]) > 0 and input_ids[0][0] == shared.tokenizer.bos_token_id: + input_ids = input_ids[:, 1:] # Handling truncation if truncation_length is not None: @@ -268,7 +284,7 @@ def get_reply_from_output_ids(output_ids, state=None, starting_from=0): def generate_reply_HF(question, original_question, seed, state, stopping_strings=None, is_chat=False): generate_params = {} - for k in ['max_new_tokens', 'temperature', 'temperature_last', 'dynamic_temperature', 'dynatemp_low', 'dynatemp_high', 'dynatemp_exponent', 'smoothing_factor', 'smoothing_curve', 'top_p', 'min_p', 'top_k', 'repetition_penalty', 'presence_penalty', 'frequency_penalty', 'repetition_penalty_range', 'typical_p', 'tfs', 'top_a', 'guidance_scale', 'penalty_alpha', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'do_sample', 'encoder_repetition_penalty', 'no_repeat_ngram_size']: + for k in ['max_new_tokens', 'temperature', 'temperature_last', 'dynamic_temperature', 'dynatemp_low', 'dynatemp_high', 'dynatemp_exponent', 'smoothing_factor', 'smoothing_curve', 'top_p', 'min_p', 'top_k', 'repetition_penalty', 'presence_penalty', 'frequency_penalty', 'repetition_penalty_range', 'typical_p', 'tfs', 'top_a', 'guidance_scale', 'penalty_alpha', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'do_sample', 'encoder_repetition_penalty', 'no_repeat_ngram_size', 'dry_multiplier', 'dry_base', 'dry_allowed_length', 'dry_sequence_breakers']: if k in state: generate_params[k] = state[k] @@ -343,8 +359,7 @@ def generate_reply_HF(question, original_question, seed, state, stopping_strings print() logger.info("PROMPT=") - print(decode(input_ids[0], skip_special_tokens=False)) - print() + print_prompt(decode(input_ids[0], skip_special_tokens=False)) # Handle StreamingLLM for llamacpp_HF if shared.model.__class__.__name__ == 'LlamacppHF' and shared.args.streaming_llm: @@ -433,3 +448,18 @@ def generate_reply_custom(question, original_question, seed, state, stopping_str new_tokens = len(encode(original_question + reply)[0]) - original_tokens print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})') return + + +def print_prompt(prompt, max_chars=2000): + DARK_YELLOW = "\033[38;5;3m" + RESET = "\033[0m" + + if len(prompt) > max_chars: + half_chars = max_chars // 2 + hidden_len = len(prompt[half_chars:-half_chars]) + hidden_msg = f"{DARK_YELLOW}[...{hidden_len} characters hidden...]{RESET}" + print(prompt[:half_chars] + hidden_msg + prompt[-half_chars:]) + else: + print(prompt) + + print() diff --git a/modules/training.py b/modules/training.py index dd360e7d..a810fb6e 100644 --- a/modules/training.py +++ b/modules/training.py @@ -292,12 +292,6 @@ def calc_trainable_parameters(model): def do_train(lora_name: str, always_override: bool, q_proj_en: bool, v_proj_en: bool, k_proj_en: bool, o_proj_en: bool, gate_proj_en: bool, down_proj_en: bool, up_proj_en: bool, save_steps: int, micro_batch_size: int, batch_size: int, epochs: int, learning_rate: str, lr_scheduler_type: str, lora_rank: int, lora_alpha: int, lora_dropout: float, cutoff_len: int, dataset: str, eval_dataset: str, format: str, eval_steps: int, raw_text_file: str, overlap_len: int, newline_favor_len: int, higher_rank_limit: bool, warmup_steps: int, optimizer: str, hard_cut_string: str, train_only_after: str, stop_at_loss: float, add_eos_token: bool, min_chars: int, report_to: str): - if shared.args.monkey_patch: - from alpaca_lora_4bit.monkeypatch.peft_tuners_lora_monkey_patch import ( - replace_peft_model_with_int4_lora_model - ) - replace_peft_model_with_int4_lora_model() - global WANT_INTERRUPT WANT_INTERRUPT = False @@ -329,10 +323,6 @@ def do_train(lora_name: str, always_override: bool, q_proj_en: bool, v_proj_en: time.sleep(5) - if shared.args.loader == 'GPTQ-for-LLaMa' and not shared.args.monkey_patch: - yield "LoRA training with GPTQ-for-LLaMa requires loading with `--monkey-patch`" - return - if cutoff_len <= 0 or micro_batch_size <= 0 or batch_size <= 0 or actual_lr <= 0 or lora_rank <= 0 or lora_alpha <= 0: yield "Cannot input zeroes." return @@ -553,15 +543,6 @@ def do_train(lora_name: str, always_override: bool, q_proj_en: bool, v_proj_en: yield traceback.format_exc().replace('\n', '\n\n') return - if shared.args.monkey_patch: - from alpaca_lora_4bit.autograd_4bit import Autograd4bitQuantLinear - from alpaca_lora_4bit.models import Linear4bitLt - for _, m in lora_model.named_modules(): - if isinstance(m, Autograd4bitQuantLinear) or isinstance(m, Linear4bitLt): - if m.is_v1_model: - m.zeros = m.zeros.half() - m.scales = m.scales.half() - class Tracked(): def __init__(self): self.current_steps = 0 diff --git a/modules/ui.py b/modules/ui.py index 37526168..0126190a 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -70,7 +70,6 @@ def list_model_elements(): 'use_double_quant', 'wbits', 'groupsize', - 'model_type', 'pre_layer', 'triton', 'desc_act', @@ -147,6 +146,10 @@ def list_interface_input_elements(): 'repetition_penalty_range', 'encoder_repetition_penalty', 'no_repeat_ngram_size', + 'dry_multiplier', + 'dry_base', + 'dry_allowed_length', + 'dry_sequence_breakers', 'do_sample', 'penalty_alpha', 'mirostat_mode', diff --git a/modules/ui_model_menu.py b/modules/ui_model_menu.py index 52c59463..6cda7ecd 100644 --- a/modules/ui_model_menu.py +++ b/modules/ui_model_menu.py @@ -97,11 +97,10 @@ def create_ui(): shared.gradio['n_ctx'] = gr.Slider(minimum=0, maximum=shared.settings['truncation_length_max'], step=256, label="n_ctx", value=shared.args.n_ctx, info='Context length. Try lowering this if you run out of memory while loading the model.') shared.gradio['tensor_split'] = gr.Textbox(label='tensor_split', info='List of proportions to split the model across multiple GPUs. Example: 18,17') shared.gradio['n_batch'] = gr.Slider(label="n_batch", minimum=1, maximum=2048, step=1, value=shared.args.n_batch) - shared.gradio['threads'] = gr.Slider(label="threads", minimum=0, step=1, maximum=32, value=shared.args.threads) - shared.gradio['threads_batch'] = gr.Slider(label="threads_batch", minimum=0, step=1, maximum=32, value=shared.args.threads_batch) + shared.gradio['threads'] = gr.Slider(label="threads", minimum=0, step=1, maximum=256, value=shared.args.threads) + shared.gradio['threads_batch'] = gr.Slider(label="threads_batch", minimum=0, step=1, maximum=256, value=shared.args.threads_batch) shared.gradio['wbits'] = gr.Dropdown(label="wbits", choices=["None", 1, 2, 3, 4, 8], value=shared.args.wbits if shared.args.wbits > 0 else "None") shared.gradio['groupsize'] = gr.Dropdown(label="groupsize", choices=["None", 32, 64, 128, 1024], value=shared.args.groupsize if shared.args.groupsize > 0 else "None") - shared.gradio['model_type'] = gr.Dropdown(label="model_type", choices=["None"], value=shared.args.model_type or "None") shared.gradio['pre_layer'] = gr.Slider(label="pre_layer", minimum=0, maximum=100, value=shared.args.pre_layer[0] if shared.args.pre_layer is not None else 0) shared.gradio['gpu_split'] = gr.Textbox(label='gpu-split', info='Comma-separated list of VRAM (in GB) to use per GPU. Example: 20,7,7') shared.gradio['max_seq_len'] = gr.Slider(label='max_seq_len', minimum=0, maximum=shared.settings['truncation_length_max'], step=256, info='Context length. Try lowering this if you run out of memory while loading the model.', value=shared.args.max_seq_len) @@ -111,7 +110,6 @@ def create_ui(): shared.gradio['compress_pos_emb'] = gr.Slider(label='compress_pos_emb', minimum=1, maximum=8, step=1, info='Positional embeddings compression factor. Should be set to (context length) / (model\'s original context length). Equal to 1/rope_freq_scale.', value=shared.args.compress_pos_emb) shared.gradio['autogptq_info'] = gr.Markdown('ExLlamav2_HF is recommended over AutoGPTQ for models derived from Llama.') - shared.gradio['quipsharp_info'] = gr.Markdown('QuIP# has to be installed manually at the moment.') with gr.Column(): shared.gradio['load_in_8bit'] = gr.Checkbox(label="load-in-8bit", value=shared.args.load_in_8bit) @@ -187,9 +185,7 @@ def create_ui(): def create_event_handlers(): - shared.gradio['loader'].change( - loaders.make_loader_params_visible, gradio('loader'), gradio(loaders.get_all_params())).then( - lambda value: gr.update(choices=loaders.get_model_types(value)), gradio('loader'), gradio('model_type')) + shared.gradio['loader'].change(loaders.make_loader_params_visible, gradio('loader'), gradio(loaders.get_all_params())) # In this event handler, the interface state is read and updated # with the model defaults (if any), and then the model is loaded @@ -273,6 +269,10 @@ def load_lora_wrapper(selected_loras): def download_model_wrapper(repo_id, specific_file, progress=gr.Progress(), return_links=False, check=False): try: + if repo_id == "": + yield ("Please enter a model path") + return + downloader = importlib.import_module("download-model").ModelDownloader() progress(0.0) @@ -290,7 +290,13 @@ def download_model_wrapper(repo_id, specific_file, progress=gr.Progress(), retur return yield ("Getting the output folder") - output_folder = downloader.get_output_folder(model, branch, is_lora, is_llamacpp=is_llamacpp) + output_folder = downloader.get_output_folder( + model, + branch, + is_lora, + is_llamacpp=is_llamacpp, + model_dir=shared.args.model_dir if shared.args.model_dir != shared.args_defaults.model_dir else None + ) if output_folder == Path("models"): output_folder = Path(shared.args.model_dir) diff --git a/modules/ui_parameters.py b/modules/ui_parameters.py index 0414cdde..d62b74c1 100644 --- a/modules/ui_parameters.py +++ b/modules/ui_parameters.py @@ -38,6 +38,14 @@ def create_ui(default_preset): shared.gradio['presence_penalty'] = gr.Slider(0, 2, value=generate_params['presence_penalty'], step=0.05, label='presence_penalty') shared.gradio['repetition_penalty_range'] = gr.Slider(0, 4096, step=64, value=generate_params['repetition_penalty_range'], label='repetition_penalty_range') shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample') + + with gr.Blocks(): + gr.Markdown("[DRY sequence repetition penalty](https://github.com/oobabooga/text-generation-webui/pull/5677)") + shared.gradio['dry_multiplier'] = gr.Slider(0, 5, value=generate_params['dry_multiplier'], step=0.01, label='dry_multiplier', info='Set to value > 0 to enable DRY. Controls the magnitude of the penalty for the shortest penalized sequences.') + shared.gradio['dry_base'] = gr.Slider(1, 4, value=generate_params['dry_base'], step=0.01, label='dry_base', info='Controls how fast the penalty grows with increasing sequence length.') + shared.gradio['dry_allowed_length'] = gr.Slider(1, 20, value=generate_params['dry_allowed_length'], step=1, label='dry_allowed_length', info='Longest sequence that can be repeated without being penalized.') + shared.gradio['dry_sequence_breakers'] = gr.Textbox(value=generate_params['dry_sequence_breakers'], label='dry_sequence_breakers', info='Tokens across which sequence matching is not continued. Specified as a comma-separated list of quoted strings.') + gr.Markdown("[Learn more](https://github.com/oobabooga/text-generation-webui/wiki/03-%E2%80%90-Parameters-Tab)") with gr.Column(): diff --git a/one_click.py b/one_click.py index 0d543e30..55a4a3db 100644 --- a/one_click.py +++ b/one_click.py @@ -388,7 +388,7 @@ def update_requirements(initial_installation=False, pull=True): # Prepare the requirements file textgen_requirements = open(requirements_file).read().splitlines() if is_cuda118: - textgen_requirements = [req.replace('+cu121', '+cu118').replace('+cu122', '+cu118') for req in textgen_requirements] + textgen_requirements = [req.replace('+cu121', '+cu118').replace('+cu122', '+cu118') for req in textgen_requirements if "auto-gptq" not in req] if is_windows() and is_cuda118: # No flash-attention on Windows for CUDA 11 textgen_requirements = [req for req in textgen_requirements if 'oobabooga/flash-attention' not in req] diff --git a/requirements.txt b/requirements.txt index 6adb89b5..e0248384 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,11 +1,12 @@ -accelerate==0.27.* -aqlm[gpu,cpu]==1.1.3; platform_system == "Linux" +accelerate==0.30.* +aqlm[gpu,cpu]==1.1.5; platform_system == "Linux" +auto-gptq==0.7.1 bitsandbytes==0.43.* colorama datasets einops gradio==4.26.* -hqq==0.1.5 +hqq==0.1.7.post2 jinja2==3.1.2 lm_eval==0.3.0 markdown @@ -23,7 +24,7 @@ safetensors==0.4.* scipy sentencepiece tensorboard -transformers==4.40.* +transformers==4.41.* tqdm wandb @@ -36,28 +37,24 @@ soundfile openai-whisper # llama-cpp-python (CPU only, AVX2) -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.73+cpuavx2-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.73+cpuavx2-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.73+cpuavx2-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.73+cpuavx2-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.75+cpuavx2-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.75+cpuavx2-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.75+cpuavx2-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.75+cpuavx2-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" # llama-cpp-python (CUDA, no tensor cores) -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.73+cu121-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.73+cu121-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.73+cu121-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.73+cu121-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.75+cu121-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.75+cu121-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.75+cu121-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.75+cu121-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" # llama-cpp-python (CUDA, tensor cores) -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.73+cu121-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.73+cu121-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.73+cu121-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.73+cu121-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.75+cu121-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.75+cu121-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.75+cu121-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.75+cu121-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" # CUDA wheels -https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+cu121-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+cu121-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" -https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+cu121-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+cu121-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" https://github.com/oobabooga/exllamav2/releases/download/v0.0.20/exllamav2-0.0.20+cu121-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" https://github.com/oobabooga/exllamav2/releases/download/v0.0.20/exllamav2-0.0.20+cu121-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" https://github.com/oobabooga/exllamav2/releases/download/v0.0.20/exllamav2-0.0.20+cu121-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" @@ -67,8 +64,4 @@ https://github.com/oobabooga/flash-attention/releases/download/v2.5.6/flash_attn https://github.com/oobabooga/flash-attention/releases/download/v2.5.6/flash_attn-2.5.6+cu122torch2.2.0cxx11abiFALSE-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" https://github.com/Dao-AILab/flash-attention/releases/download/v2.5.6/flash_attn-2.5.6+cu122torch2.2cxx11abiFALSE-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" https://github.com/Dao-AILab/flash-attention/releases/download/v2.5.6/flash_attn-2.5.6+cu122torch2.2cxx11abiFALSE-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" -https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.1/gptq_for_llama-0.1.1+cu121-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.1/gptq_for_llama-0.1.1+cu121-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" -https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.1/gptq_for_llama-0.1.1+cu121-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.1/gptq_for_llama-0.1.1+cu121-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" -autoawq==0.2.3; platform_system == "Linux" or platform_system == "Windows" +autoawq==0.2.5; platform_system == "Linux" or platform_system == "Windows" diff --git a/requirements_amd.txt b/requirements_amd.txt index af020085..8489a97c 100644 --- a/requirements_amd.txt +++ b/requirements_amd.txt @@ -1,9 +1,9 @@ -accelerate==0.27.* +accelerate==0.30.* colorama datasets einops gradio==4.26.* -hqq==0.1.5 +hqq==0.1.7.post2 jinja2==3.1.2 lm_eval==0.3.0 markdown @@ -21,7 +21,7 @@ safetensors==0.4.* scipy sentencepiece tensorboard -transformers==4.40.* +transformers==4.41.* tqdm wandb @@ -32,20 +32,16 @@ sse-starlette==1.6.5 tiktoken # llama-cpp-python (CPU only, AVX2) -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.73+cpuavx2-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.73+cpuavx2-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.73+cpuavx2-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.73+cpuavx2-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.75+cpuavx2-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.75+cpuavx2-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.75+cpuavx2-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.75+cpuavx2-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" # AMD wheels -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/rocm/llama_cpp_python_cuda-0.2.73+rocm5.6.1-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/rocm/llama_cpp_python_cuda-0.2.73+rocm5.6.1-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" -https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+rocm5.6-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+rocm5.6-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/rocm/llama_cpp_python_cuda-0.2.75+rocm5.6.1-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/rocm/llama_cpp_python_cuda-0.2.75+rocm5.6.1-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" https://github.com/oobabooga/exllamav2/releases/download/v0.0.20/exllamav2-0.0.20+rocm5.6-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" https://github.com/oobabooga/exllamav2/releases/download/v0.0.20/exllamav2-0.0.20+rocm5.6-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" https://github.com/oobabooga/exllamav2/releases/download/v0.0.20/exllamav2-0.0.20-py3-none-any.whl; platform_system != "Darwin" and platform_machine != "x86_64" -https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.1/gptq_for_llama-0.1.1+rocm5.6-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.1/gptq_for_llama-0.1.1+rocm5.6-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" -https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.3/autoawq-0.2.3+rocm561-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.3/autoawq-0.2.3+rocm561-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" +https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.5/autoawq-0.2.5+rocm561-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" +https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.5/autoawq-0.2.5+rocm561-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" diff --git a/requirements_amd_noavx2.txt b/requirements_amd_noavx2.txt index 2ea97aa6..68a82f40 100644 --- a/requirements_amd_noavx2.txt +++ b/requirements_amd_noavx2.txt @@ -1,9 +1,9 @@ -accelerate==0.27.* +accelerate==0.30.* colorama datasets einops gradio==4.26.* -hqq==0.1.5 +hqq==0.1.7.post2 jinja2==3.1.2 lm_eval==0.3.0 markdown @@ -21,7 +21,7 @@ safetensors==0.4.* scipy sentencepiece tensorboard -transformers==4.40.* +transformers==4.41.* tqdm wandb @@ -32,18 +32,14 @@ sse-starlette==1.6.5 tiktoken # llama-cpp-python (CPU only, no AVX2) -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.73+cpuavx-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.73+cpuavx-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.73+cpuavx-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.73+cpuavx-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.75+cpuavx-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.75+cpuavx-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.75+cpuavx-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.75+cpuavx-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" # AMD wheels -https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+rocm5.6-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+rocm5.6-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" https://github.com/oobabooga/exllamav2/releases/download/v0.0.20/exllamav2-0.0.20+rocm5.6-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" https://github.com/oobabooga/exllamav2/releases/download/v0.0.20/exllamav2-0.0.20+rocm5.6-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" https://github.com/oobabooga/exllamav2/releases/download/v0.0.20/exllamav2-0.0.20-py3-none-any.whl; platform_system != "Darwin" and platform_machine != "x86_64" -https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.1/gptq_for_llama-0.1.1+rocm5.6-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.1/gptq_for_llama-0.1.1+rocm5.6-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" -https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.3/autoawq-0.2.3+rocm561-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.3/autoawq-0.2.3+rocm561-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" +https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.5/autoawq-0.2.5+rocm561-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" +https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.5/autoawq-0.2.5+rocm561-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" diff --git a/requirements_apple_intel.txt b/requirements_apple_intel.txt index 3e579f0d..d3cecd08 100644 --- a/requirements_apple_intel.txt +++ b/requirements_apple_intel.txt @@ -1,9 +1,9 @@ -accelerate==0.27.* +accelerate==0.30.* colorama datasets einops gradio==4.26.* -hqq==0.1.5 +hqq==0.1.7.post2 jinja2==3.1.2 lm_eval==0.3.0 markdown @@ -21,7 +21,7 @@ safetensors==0.4.* scipy sentencepiece tensorboard -transformers==4.40.* +transformers==4.41.* tqdm wandb @@ -32,10 +32,10 @@ sse-starlette==1.6.5 tiktoken # Mac wheels -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.73-cp311-cp311-macosx_11_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "20.0.0" and platform_release < "21.0.0" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.73-cp310-cp310-macosx_11_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "20.0.0" and platform_release < "21.0.0" and python_version == "3.10" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.73-cp311-cp311-macosx_12_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "21.0.0" and platform_release < "22.0.0" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.73-cp310-cp310-macosx_12_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "21.0.0" and platform_release < "22.0.0" and python_version == "3.10" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.73-cp311-cp311-macosx_14_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.73-cp310-cp310-macosx_14_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.75-cp311-cp311-macosx_11_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "20.0.0" and platform_release < "21.0.0" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.75-cp310-cp310-macosx_11_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "20.0.0" and platform_release < "21.0.0" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.75-cp311-cp311-macosx_12_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "21.0.0" and platform_release < "22.0.0" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.75-cp310-cp310-macosx_12_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "21.0.0" and platform_release < "22.0.0" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.75-cp311-cp311-macosx_14_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.75-cp310-cp310-macosx_14_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.10" https://github.com/oobabooga/exllamav2/releases/download/v0.0.20/exllamav2-0.0.20-py3-none-any.whl diff --git a/requirements_apple_silicon.txt b/requirements_apple_silicon.txt index 830e5ba8..c940cc52 100644 --- a/requirements_apple_silicon.txt +++ b/requirements_apple_silicon.txt @@ -1,9 +1,9 @@ -accelerate==0.27.* +accelerate==0.30.* colorama datasets einops gradio==4.26.* -hqq==0.1.5 +hqq==0.1.7.post2 jinja2==3.1.2 lm_eval==0.3.0 markdown @@ -21,7 +21,7 @@ safetensors==0.4.* scipy sentencepiece tensorboard -transformers==4.40.* +transformers==4.41.* tqdm wandb @@ -32,12 +32,12 @@ sse-starlette==1.6.5 tiktoken # Mac wheels -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.73-cp311-cp311-macosx_11_0_arm64.whl; platform_system == "Darwin" and platform_release >= "20.0.0" and platform_release < "21.0.0" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.73-cp310-cp310-macosx_11_0_arm64.whl; platform_system == "Darwin" and platform_release >= "20.0.0" and platform_release < "21.0.0" and python_version == "3.10" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.73-cp311-cp311-macosx_12_0_arm64.whl; platform_system == "Darwin" and platform_release >= "21.0.0" and platform_release < "22.0.0" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.73-cp310-cp310-macosx_12_0_arm64.whl; platform_system == "Darwin" and platform_release >= "21.0.0" and platform_release < "22.0.0" and python_version == "3.10" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.73-cp311-cp311-macosx_13_0_arm64.whl; platform_system == "Darwin" and platform_release >= "22.0.0" and platform_release < "23.0.0" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.73-cp310-cp310-macosx_13_0_arm64.whl; platform_system == "Darwin" and platform_release >= "22.0.0" and platform_release < "23.0.0" and python_version == "3.10" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.73-cp311-cp311-macosx_14_0_arm64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.73-cp310-cp310-macosx_14_0_arm64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.75-cp311-cp311-macosx_11_0_arm64.whl; platform_system == "Darwin" and platform_release >= "20.0.0" and platform_release < "21.0.0" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.75-cp310-cp310-macosx_11_0_arm64.whl; platform_system == "Darwin" and platform_release >= "20.0.0" and platform_release < "21.0.0" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.75-cp311-cp311-macosx_12_0_arm64.whl; platform_system == "Darwin" and platform_release >= "21.0.0" and platform_release < "22.0.0" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.75-cp310-cp310-macosx_12_0_arm64.whl; platform_system == "Darwin" and platform_release >= "21.0.0" and platform_release < "22.0.0" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.75-cp311-cp311-macosx_13_0_arm64.whl; platform_system == "Darwin" and platform_release >= "22.0.0" and platform_release < "23.0.0" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.75-cp310-cp310-macosx_13_0_arm64.whl; platform_system == "Darwin" and platform_release >= "22.0.0" and platform_release < "23.0.0" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.75-cp311-cp311-macosx_14_0_arm64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.75-cp310-cp310-macosx_14_0_arm64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.10" https://github.com/oobabooga/exllamav2/releases/download/v0.0.20/exllamav2-0.0.20-py3-none-any.whl diff --git a/requirements_cpu_only.txt b/requirements_cpu_only.txt index 24278449..77420e6f 100644 --- a/requirements_cpu_only.txt +++ b/requirements_cpu_only.txt @@ -1,9 +1,9 @@ -accelerate==0.27.* +accelerate==0.30.* colorama datasets einops gradio==4.26.* -hqq==0.1.5 +hqq==0.1.7.post2 jinja2==3.1.2 lm_eval==0.3.0 markdown @@ -21,7 +21,7 @@ safetensors==0.4.* scipy sentencepiece tensorboard -transformers==4.40.* +transformers==4.41.* tqdm wandb @@ -32,7 +32,7 @@ sse-starlette==1.6.5 tiktoken # llama-cpp-python (CPU only, AVX2) -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.73+cpuavx2-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.73+cpuavx2-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.73+cpuavx2-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.73+cpuavx2-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.75+cpuavx2-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.75+cpuavx2-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.75+cpuavx2-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.75+cpuavx2-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" diff --git a/requirements_cpu_only_noavx2.txt b/requirements_cpu_only_noavx2.txt index b653d4d4..56bdf547 100644 --- a/requirements_cpu_only_noavx2.txt +++ b/requirements_cpu_only_noavx2.txt @@ -1,9 +1,9 @@ -accelerate==0.27.* +accelerate==0.30.* colorama datasets einops gradio==4.26.* -hqq==0.1.5 +hqq==0.1.7.post2 jinja2==3.1.2 lm_eval==0.3.0 markdown @@ -21,7 +21,7 @@ safetensors==0.4.* scipy sentencepiece tensorboard -transformers==4.40.* +transformers==4.41.* tqdm wandb @@ -32,7 +32,7 @@ sse-starlette==1.6.5 tiktoken # llama-cpp-python (CPU only, no AVX2) -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.73+cpuavx-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.73+cpuavx-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.73+cpuavx-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.73+cpuavx-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.75+cpuavx-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.75+cpuavx-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.75+cpuavx-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.75+cpuavx-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" diff --git a/requirements_noavx2.txt b/requirements_noavx2.txt index 4da6f0b9..c110be62 100644 --- a/requirements_noavx2.txt +++ b/requirements_noavx2.txt @@ -1,11 +1,12 @@ -accelerate==0.27.* -aqlm[gpu,cpu]==1.1.3; platform_system == "Linux" +accelerate==0.30.* +aqlm[gpu,cpu]==1.1.5; platform_system == "Linux" +auto-gptq==0.7.1 bitsandbytes==0.43.* colorama datasets einops gradio==4.26.* -hqq==0.1.5 +hqq==0.1.7.post2 jinja2==3.1.2 lm_eval==0.3.0 markdown @@ -23,7 +24,7 @@ safetensors==0.4.* scipy sentencepiece tensorboard -transformers==4.40.* +transformers==4.41.* tqdm wandb @@ -34,28 +35,24 @@ sse-starlette==1.6.5 tiktoken # llama-cpp-python (CPU only, no AVX2) -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.73+cpuavx-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.73+cpuavx-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.73+cpuavx-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.73+cpuavx-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.75+cpuavx-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.75+cpuavx-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.75+cpuavx-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.75+cpuavx-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" # llama-cpp-python (CUDA, no tensor cores) -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.73+cu121avx-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.73+cu121avx-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.73+cu121avx-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.73+cu121avx-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.75+cu121avx-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.75+cu121avx-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.75+cu121avx-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.75+cu121avx-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" # llama-cpp-python (CUDA, tensor cores) -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.73+cu121avx-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.73+cu121avx-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.73+cu121avx-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.73+cu121avx-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.75+cu121avx-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.75+cu121avx-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.75+cu121avx-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" +https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.75+cu121avx-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" # CUDA wheels -https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+cu121-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+cu121-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" -https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+cu121-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+cu121-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" https://github.com/oobabooga/exllamav2/releases/download/v0.0.20/exllamav2-0.0.20+cu121-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" https://github.com/oobabooga/exllamav2/releases/download/v0.0.20/exllamav2-0.0.20+cu121-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" https://github.com/oobabooga/exllamav2/releases/download/v0.0.20/exllamav2-0.0.20+cu121-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" @@ -65,8 +62,4 @@ https://github.com/oobabooga/flash-attention/releases/download/v2.5.6/flash_attn https://github.com/oobabooga/flash-attention/releases/download/v2.5.6/flash_attn-2.5.6+cu122torch2.2.0cxx11abiFALSE-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" https://github.com/Dao-AILab/flash-attention/releases/download/v2.5.6/flash_attn-2.5.6+cu122torch2.2cxx11abiFALSE-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" https://github.com/Dao-AILab/flash-attention/releases/download/v2.5.6/flash_attn-2.5.6+cu122torch2.2cxx11abiFALSE-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" -https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.1/gptq_for_llama-0.1.1+cu121-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11" -https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.1/gptq_for_llama-0.1.1+cu121-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10" -https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.1/gptq_for_llama-0.1.1+cu121-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11" -https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.1/gptq_for_llama-0.1.1+cu121-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10" -autoawq==0.2.3; platform_system == "Linux" or platform_system == "Windows" +autoawq==0.2.5; platform_system == "Linux" or platform_system == "Windows" diff --git a/requirements_nowheels.txt b/requirements_nowheels.txt index 8da69bd2..821049bc 100644 --- a/requirements_nowheels.txt +++ b/requirements_nowheels.txt @@ -1,9 +1,9 @@ -accelerate==0.27.* +accelerate==0.30.* colorama datasets einops gradio==4.26.* -hqq==0.1.5 +hqq==0.1.7.post2 jinja2==3.1.2 lm_eval==0.3.0 markdown @@ -21,7 +21,7 @@ safetensors==0.4.* scipy sentencepiece tensorboard -transformers==4.40.* +transformers==4.41.* tqdm wandb diff --git a/server.py b/server.py index 4b5185be..04a5b16d 100644 --- a/server.py +++ b/server.py @@ -32,7 +32,7 @@ import sys import time from functools import partial from pathlib import Path -from threading import Lock +from threading import Lock, Thread import yaml @@ -52,7 +52,7 @@ from modules import ( ) from modules.extensions import apply_extensions from modules.LoRA import add_lora_to_model -from modules.models import load_model +from modules.models import load_model, unload_model_if_idle from modules.models_settings import ( get_fallback_settings, get_model_metadata, @@ -245,6 +245,11 @@ if __name__ == "__main__": shared.generation_lock = Lock() + if shared.args.idle_timeout > 0: + timer_thread = Thread(target=unload_model_if_idle) + timer_thread.daemon = True + timer_thread.start() + if shared.args.nowebui: # Start the API in standalone mode shared.args.extensions = [x for x in shared.args.extensions if x != 'gallery']