mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-25 01:09:22 +01:00
Update GPTQ-models-(4-bit-mode).md
This commit is contained in:
parent
f276d88546
commit
99d701994a
@ -6,14 +6,6 @@ GPTQ is a clever quantization algorithm that lightly reoptimizes the weights dur
|
|||||||
|
|
||||||
There are two ways of loading GPTQ models in the web UI at the moment:
|
There are two ways of loading GPTQ models in the web UI at the moment:
|
||||||
|
|
||||||
* Using GPTQ-for-LLaMa directly:
|
|
||||||
* faster CPU offloading
|
|
||||||
* faster multi-GPU inference
|
|
||||||
* supports loading LoRAs using a monkey patch
|
|
||||||
* included by default in the one-click installers
|
|
||||||
* requires you to manually figure out the wbits/groupsize/model_type parameters for the model to be able to load it
|
|
||||||
* supports either only cuda or only triton depending on the branch
|
|
||||||
|
|
||||||
* Using AutoGPTQ:
|
* Using AutoGPTQ:
|
||||||
* supports more models
|
* supports more models
|
||||||
* standardized (no need to guess any parameter)
|
* standardized (no need to guess any parameter)
|
||||||
@ -21,8 +13,59 @@ There are two ways of loading GPTQ models in the web UI at the moment:
|
|||||||
* ~no wheels are presently available so it requires manual compilation~
|
* ~no wheels are presently available so it requires manual compilation~
|
||||||
* supports loading both triton and cuda models
|
* supports loading both triton and cuda models
|
||||||
|
|
||||||
|
* Using GPTQ-for-LLaMa directly:
|
||||||
|
* faster CPU offloading
|
||||||
|
* faster multi-GPU inference
|
||||||
|
* supports loading LoRAs using a monkey patch
|
||||||
|
* requires you to manually figure out the wbits/groupsize/model_type parameters for the model to be able to load it
|
||||||
|
* supports either only cuda or only triton depending on the branch
|
||||||
|
|
||||||
For creating new quantizations, I recommend using AutoGPTQ: https://github.com/PanQiWei/AutoGPTQ
|
For creating new quantizations, I recommend using AutoGPTQ: https://github.com/PanQiWei/AutoGPTQ
|
||||||
|
|
||||||
|
## AutoGPTQ
|
||||||
|
|
||||||
|
### Installation
|
||||||
|
|
||||||
|
No additional steps are necessary as AutoGPTQ is already in the `requirements.txt` for the webui. If you still want or need to install it manually for whatever reason, these are the commands:
|
||||||
|
|
||||||
|
```
|
||||||
|
conda activate textgen
|
||||||
|
git clone https://github.com/PanQiWei/AutoGPTQ.git && cd AutoGPTQ
|
||||||
|
pip install .
|
||||||
|
```
|
||||||
|
|
||||||
|
The last command requires `nvcc` to be installed (see the [instructions above](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#step-1-install-nvcc)).
|
||||||
|
|
||||||
|
### Usage
|
||||||
|
|
||||||
|
When you quantize a model using AutoGPTQ, a folder containing a filed called `quantize_config.json` will be generated. Place that folder inside your `models/` folder and load it with the `--autogptq` flag:
|
||||||
|
|
||||||
|
```
|
||||||
|
python server.py --autogptq --model model_name
|
||||||
|
```
|
||||||
|
|
||||||
|
Alternatively, check the `autogptq` box in the "Model" tab of the UI before loading the model.
|
||||||
|
|
||||||
|
### Offloading
|
||||||
|
|
||||||
|
In order to do CPU offloading or multi-gpu inference with AutoGPTQ, use the `--gpu-memory` flag. It is currently somewhat slower than offloading with the `--pre_layer` option in GPTQ-for-LLaMA.
|
||||||
|
|
||||||
|
For CPU offloading:
|
||||||
|
|
||||||
|
```
|
||||||
|
python server.py --autogptq --gpu-memory 3000MiB --model model_name
|
||||||
|
```
|
||||||
|
|
||||||
|
For multi-GPU inference:
|
||||||
|
|
||||||
|
```
|
||||||
|
python server.py --autogptq --gpu-memory 3000MiB 6000MiB --model model_name
|
||||||
|
```
|
||||||
|
|
||||||
|
### Using LoRAs with AutoGPTQ
|
||||||
|
|
||||||
|
Not supported yet.
|
||||||
|
|
||||||
## GPTQ-for-LLaMa
|
## GPTQ-for-LLaMa
|
||||||
|
|
||||||
GPTQ-for-LLaMa is the original adaptation of GPTQ for the LLaMA model. It was made possible by [@qwopqwop200](https://github.com/qwopqwop200/GPTQ-for-LLaMa): https://github.com/qwopqwop200/GPTQ-for-LLaMa
|
GPTQ-for-LLaMa is the original adaptation of GPTQ for the LLaMA model. It was made possible by [@qwopqwop200](https://github.com/qwopqwop200/GPTQ-for-LLaMa): https://github.com/qwopqwop200/GPTQ-for-LLaMa
|
||||||
@ -108,23 +151,21 @@ These are models that you can simply download and place in your `models` folder.
|
|||||||
|
|
||||||
### Starting the web UI:
|
### Starting the web UI:
|
||||||
|
|
||||||
|
Use the `--gptq-for-llama` flag.
|
||||||
|
|
||||||
For the models converted without `group-size`:
|
For the models converted without `group-size`:
|
||||||
|
|
||||||
```
|
```
|
||||||
python server.py --model llama-7b-4bit
|
python server.py --model llama-7b-4bit --gptq-for-llama
|
||||||
```
|
```
|
||||||
|
|
||||||
For the models converted with `group-size`:
|
For the models converted with `group-size`:
|
||||||
|
|
||||||
```
|
```
|
||||||
python server.py --model llama-13b-4bit-128g
|
python server.py --model llama-13b-4bit-128g --gptq-for-llama --wbits 4 --groupsize 128
|
||||||
```
|
```
|
||||||
|
|
||||||
The command-line flags `--wbits` and `--groupsize` are automatically detected based on the folder names, but you can also specify them manually like
|
The command-line flags `--wbits` and `--groupsize` are automatically detected based on the folder names in many cases.
|
||||||
|
|
||||||
```
|
|
||||||
python server.py --model llama-13b-4bit-128g --wbits 4 --groupsize 128
|
|
||||||
```
|
|
||||||
|
|
||||||
### CPU offloading
|
### CPU offloading
|
||||||
|
|
||||||
@ -171,46 +212,4 @@ pip install git+https://github.com/sterlind/GPTQ-for-LLaMa.git@lora_4bit
|
|||||||
python server.py --model llama-7b-4bit-128g --listen --lora tloen_alpaca-lora-7b --monkey-patch
|
python server.py --model llama-7b-4bit-128g --listen --lora tloen_alpaca-lora-7b --monkey-patch
|
||||||
```
|
```
|
||||||
|
|
||||||
## AutoGPTQ
|
|
||||||
|
|
||||||
### Installation
|
|
||||||
|
|
||||||
No additional steps are necessary as AutoGPTQ is already in the `requirements.txt` for the webui. If you still want or need to install it manually for whatever reason, these are the commands:
|
|
||||||
|
|
||||||
```
|
|
||||||
conda activate textgen
|
|
||||||
git clone https://github.com/PanQiWei/AutoGPTQ.git && cd AutoGPTQ
|
|
||||||
pip install .
|
|
||||||
```
|
|
||||||
|
|
||||||
The last command requires `nvcc` to be installed (see the [instructions above](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#step-1-install-nvcc)).
|
|
||||||
|
|
||||||
### Usage
|
|
||||||
|
|
||||||
When you quantize a model using AutoGPTQ, a folder containing a filed called `quantize_config.json` will be generated. Place that folder inside your `models/` folder and load it with the `--autogptq` flag:
|
|
||||||
|
|
||||||
```
|
|
||||||
python server.py --autogptq --model model_name
|
|
||||||
```
|
|
||||||
|
|
||||||
Alternatively, check the `autogptq` box in the "Model" tab of the UI before loading the model.
|
|
||||||
|
|
||||||
### Offloading
|
|
||||||
|
|
||||||
In order to do CPU offloading or multi-gpu inference with AutoGPTQ, use the `--gpu-memory` flag. It is currently somewhat slower than offloading with the `--pre_layer` option in GPTQ-for-LLaMA.
|
|
||||||
|
|
||||||
For CPU offloading:
|
|
||||||
|
|
||||||
```
|
|
||||||
python server.py --autogptq --gpu-memory 3000MiB --model model_name
|
|
||||||
```
|
|
||||||
|
|
||||||
For multi-GPU inference:
|
|
||||||
|
|
||||||
```
|
|
||||||
python server.py --autogptq --gpu-memory 3000MiB 6000MiB --model model_name
|
|
||||||
```
|
|
||||||
|
|
||||||
### Using LoRAs with AutoGPTQ
|
|
||||||
|
|
||||||
Not supported yet.
|
|
||||||
|
Loading…
Reference in New Issue
Block a user