mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-26 01:30:20 +01:00
General improvements
This commit is contained in:
parent
7fa5d96c22
commit
9d1dcf880a
@ -1,10 +1,10 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
import modules.shared as shared
|
||||
from modules.callbacks import Iteratorize
|
||||
|
||||
import llamacpp
|
||||
|
||||
import modules.shared as shared
|
||||
from modules.callbacks import Iteratorize
|
||||
|
||||
|
||||
class LlamaCppTokenizer:
|
||||
"""A thin wrapper over the llamacpp tokenizer"""
|
||||
@ -37,18 +37,18 @@ class LlamaCppModel:
|
||||
|
||||
result = self()
|
||||
result.model = _model
|
||||
result.params = params
|
||||
|
||||
tokenizer = LlamaCppTokenizer.from_model(_model)
|
||||
return result, tokenizer
|
||||
|
||||
# TODO: Allow passing in params for each inference
|
||||
def generate(self, context="", num_tokens=10, callback=None):
|
||||
# params = self.params
|
||||
# params.n_predict = token_count
|
||||
# params.top_p = top_p
|
||||
# params.top_k = top_k
|
||||
# params.temp = temperature
|
||||
# params.repeat_penalty = repetition_penalty
|
||||
def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=1, callback=None):
|
||||
params = self.params
|
||||
params.n_predict = token_count
|
||||
params.top_p = top_p
|
||||
params.top_k = top_k
|
||||
params.temp = temperature
|
||||
params.repeat_penalty = repetition_penalty
|
||||
#params.repeat_last_n = repeat_last_n
|
||||
|
||||
# model.params = params
|
||||
@ -58,7 +58,7 @@ class LlamaCppModel:
|
||||
output = ""
|
||||
is_end_of_text = False
|
||||
ctr = 0
|
||||
while ctr < num_tokens and not is_end_of_text:
|
||||
while ctr < token_count and not is_end_of_text:
|
||||
if self.model.has_unconsumed_input():
|
||||
self.model.ingest_all_pending_input()
|
||||
else:
|
||||
@ -68,14 +68,13 @@ class LlamaCppModel:
|
||||
is_end_of_text = token == self.model.token_eos()
|
||||
if callback:
|
||||
callback(text)
|
||||
output += text
|
||||
ctr += 1
|
||||
|
||||
return output
|
||||
|
||||
def generate_with_streaming(self, **kwargs):
|
||||
with Iteratorize(self.generate, kwargs, callback=None) as generator:
|
||||
reply = kwargs['context']
|
||||
reply = ''
|
||||
for token in generator:
|
||||
reply += token
|
||||
yield reply
|
||||
|
@ -22,7 +22,7 @@ def get_max_prompt_length(tokens):
|
||||
return max_length
|
||||
|
||||
def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
|
||||
if shared.is_RWKV or shared.is_llamacpp:
|
||||
if any((shared.is_RWKV, shared.is_llamacpp)):
|
||||
input_ids = shared.tokenizer.encode(str(prompt))
|
||||
input_ids = np.array(input_ids).reshape(1, len(input_ids))
|
||||
return input_ids
|
||||
@ -116,7 +116,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
||||
|
||||
# These models are not part of Hugging Face, so we handle them
|
||||
# separately and terminate the function call earlier
|
||||
if shared.is_RWKV:
|
||||
if any((shared.is_RWKV, shared.is_llamacpp)):
|
||||
try:
|
||||
if shared.args.no_stream:
|
||||
reply = shared.model.generate(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k)
|
||||
@ -142,24 +142,6 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
||||
input_ids = encode(question)
|
||||
print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(input_ids[0]))/(t1-t0):.2f} tokens/s, {len(output)-len(input_ids[0])} tokens)")
|
||||
return
|
||||
elif shared.is_llamacpp:
|
||||
try:
|
||||
if shared.args.no_stream:
|
||||
reply = shared.model.generate(context=question, num_tokens=max_new_tokens)
|
||||
yield formatted_outputs(reply, shared.model_name)
|
||||
else:
|
||||
if not (shared.args.chat or shared.args.cai_chat):
|
||||
yield formatted_outputs(question, shared.model_name)
|
||||
for reply in shared.model.generate_with_streaming(context=question, num_tokens=max_new_tokens):
|
||||
yield formatted_outputs(reply, shared.model_name)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
finally:
|
||||
t1 = time.time()
|
||||
output = encode(reply)[0]
|
||||
input_ids = encode(question)
|
||||
print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(input_ids[0]))/(t1-t0):.2f} tokens/s, {len(output)-len(input_ids[0])} tokens)")
|
||||
return
|
||||
|
||||
input_ids = encode(question, max_new_tokens)
|
||||
original_input_ids = input_ids
|
||||
|
@ -2,6 +2,7 @@ accelerate==0.18.0
|
||||
bitsandbytes==0.37.2
|
||||
flexgen==0.1.7
|
||||
gradio==3.23.0
|
||||
llamacpp==0.1.10
|
||||
markdown
|
||||
numpy
|
||||
peft==0.2.0
|
||||
@ -11,5 +12,4 @@ safetensors==0.3.0
|
||||
sentencepiece
|
||||
tqdm
|
||||
datasets
|
||||
llamacpp>=0.1.9
|
||||
git+https://github.com/huggingface/transformers
|
||||
|
Loading…
Reference in New Issue
Block a user