mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-25 17:29:22 +01:00
Add 'hallucinations' filter #326
This breaks the API since a new parameter has been added. It should be a one-line fix. See api-example.py.
This commit is contained in:
parent
128d18e298
commit
9d6a625bd6
@ -26,6 +26,7 @@ async def run(context):
|
||||
'top_p': 0.9,
|
||||
'typical_p': 1,
|
||||
'repetition_penalty': 1.05,
|
||||
'encoder_repetition_penalty': 1.0,
|
||||
'top_k': 0,
|
||||
'min_length': 0,
|
||||
'no_repeat_ngram_size': 0,
|
||||
@ -59,6 +60,7 @@ async def run(context):
|
||||
params['top_p'],
|
||||
params['typical_p'],
|
||||
params['repetition_penalty'],
|
||||
params['encoder_repetition_penalty'],
|
||||
params['top_k'],
|
||||
params['min_length'],
|
||||
params['no_repeat_ngram_size'],
|
||||
|
@ -24,6 +24,7 @@ params = {
|
||||
'top_p': 0.9,
|
||||
'typical_p': 1,
|
||||
'repetition_penalty': 1.05,
|
||||
'encoder_repetition_penalty': 1.0,
|
||||
'top_k': 0,
|
||||
'min_length': 0,
|
||||
'no_repeat_ngram_size': 0,
|
||||
@ -45,6 +46,7 @@ response = requests.post(f"http://{server}:7860/run/textgen", json={
|
||||
params['top_p'],
|
||||
params['typical_p'],
|
||||
params['repetition_penalty'],
|
||||
params['encoder_repetition_penalty'],
|
||||
params['top_k'],
|
||||
params['min_length'],
|
||||
params['no_repeat_ngram_size'],
|
||||
|
@ -97,7 +97,7 @@ def extract_message_from_reply(question, reply, name1, name2, check, impersonate
|
||||
def stop_everything_event():
|
||||
shared.stop_everything = True
|
||||
|
||||
def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1, regenerate=False):
|
||||
def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1, regenerate=False):
|
||||
shared.stop_everything = False
|
||||
just_started = True
|
||||
eos_token = '\n' if check else None
|
||||
@ -133,7 +133,7 @@ def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical
|
||||
# Generate
|
||||
reply = ''
|
||||
for i in range(chat_generation_attempts):
|
||||
for reply in generate_reply(f"{prompt}{' ' if len(reply) > 0 else ''}{reply}", max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name1}:"):
|
||||
for reply in generate_reply(f"{prompt}{' ' if len(reply) > 0 else ''}{reply}", max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name1}:"):
|
||||
|
||||
# Extracting the reply
|
||||
reply, next_character_found = extract_message_from_reply(prompt, reply, name1, name2, check)
|
||||
@ -160,7 +160,7 @@ def chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical
|
||||
|
||||
yield shared.history['visible']
|
||||
|
||||
def impersonate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1):
|
||||
def impersonate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1):
|
||||
eos_token = '\n' if check else None
|
||||
|
||||
if 'pygmalion' in shared.model_name.lower():
|
||||
@ -172,18 +172,18 @@ def impersonate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typ
|
||||
# Yield *Is typing...*
|
||||
yield shared.processing_message
|
||||
for i in range(chat_generation_attempts):
|
||||
for reply in generate_reply(prompt+reply, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name2}:"):
|
||||
for reply in generate_reply(prompt+reply, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name2}:"):
|
||||
reply, next_character_found = extract_message_from_reply(prompt, reply, name1, name2, check, impersonate=True)
|
||||
yield reply
|
||||
if next_character_found:
|
||||
break
|
||||
yield reply
|
||||
|
||||
def cai_chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1):
|
||||
for _history in chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts):
|
||||
def cai_chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1):
|
||||
for _history in chatbot_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts):
|
||||
yield generate_chat_html(_history, name1, name2, shared.character)
|
||||
|
||||
def regenerate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1):
|
||||
def regenerate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts=1):
|
||||
if (shared.character != 'None' and len(shared.history['visible']) == 1) or len(shared.history['internal']) == 0:
|
||||
yield generate_chat_output(shared.history['visible'], name1, name2, shared.character)
|
||||
else:
|
||||
@ -191,7 +191,7 @@ def regenerate_wrapper(text, max_new_tokens, do_sample, temperature, top_p, typi
|
||||
last_internal = shared.history['internal'].pop()
|
||||
# Yield '*Is typing...*'
|
||||
yield generate_chat_output(shared.history['visible']+[[last_visible[0], shared.processing_message]], name1, name2, shared.character)
|
||||
for _history in chatbot_wrapper(last_internal[0], max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts, regenerate=True):
|
||||
for _history in chatbot_wrapper(last_internal[0], max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, chat_generation_attempts, regenerate=True):
|
||||
if shared.args.cai_chat:
|
||||
shared.history['visible'][-1] = [last_visible[0], _history[-1][1]]
|
||||
else:
|
||||
|
@ -89,7 +89,7 @@ def clear_torch_cache():
|
||||
if not shared.args.cpu:
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=None, stopping_string=None):
|
||||
def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typical_p, repetition_penalty, encoder_repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=None, stopping_string=None):
|
||||
clear_torch_cache()
|
||||
t0 = time.time()
|
||||
|
||||
@ -143,6 +143,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
||||
"top_p": top_p,
|
||||
"typical_p": typical_p,
|
||||
"repetition_penalty": repetition_penalty,
|
||||
"encoder_repetition_penalty": encoder_repetition_penalty,
|
||||
"top_k": top_k,
|
||||
"min_length": min_length if shared.args.no_stream else 0,
|
||||
"no_repeat_ngram_size": no_repeat_ngram_size,
|
||||
|
20
server.py
20
server.py
@ -66,6 +66,7 @@ def load_preset_values(preset_menu, return_dict=False):
|
||||
'top_p': 1,
|
||||
'typical_p': 1,
|
||||
'repetition_penalty': 1,
|
||||
'encoder_repetition_penalty': 1,
|
||||
'top_k': 50,
|
||||
'num_beams': 1,
|
||||
'penalty_alpha': 0,
|
||||
@ -86,7 +87,7 @@ def load_preset_values(preset_menu, return_dict=False):
|
||||
if return_dict:
|
||||
return generate_params
|
||||
else:
|
||||
return generate_params['do_sample'], generate_params['temperature'], generate_params['top_p'], generate_params['typical_p'], generate_params['repetition_penalty'], generate_params['top_k'], generate_params['min_length'], generate_params['no_repeat_ngram_size'], generate_params['num_beams'], generate_params['penalty_alpha'], generate_params['length_penalty'], generate_params['early_stopping']
|
||||
return generate_params['do_sample'], generate_params['temperature'], generate_params['top_p'], generate_params['typical_p'], generate_params['repetition_penalty'], generate_params['encoder_repetition_penalty'], generate_params['top_k'], generate_params['min_length'], generate_params['no_repeat_ngram_size'], generate_params['num_beams'], generate_params['penalty_alpha'], generate_params['length_penalty'], generate_params['early_stopping']
|
||||
|
||||
def upload_soft_prompt(file):
|
||||
with zipfile.ZipFile(io.BytesIO(file)) as zf:
|
||||
@ -117,14 +118,15 @@ def create_settings_menus(default_preset):
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
shared.gradio['temperature'] = gr.Slider(0.01, 1.99, value=generate_params['temperature'], step=0.01, label='temperature')
|
||||
shared.gradio['repetition_penalty'] = gr.Slider(1.0, 2.99, value=generate_params['repetition_penalty'],step=0.01,label='repetition_penalty')
|
||||
shared.gradio['top_k'] = gr.Slider(0,200,value=generate_params['top_k'],step=1,label='top_k')
|
||||
shared.gradio['top_p'] = gr.Slider(0.0,1.0,value=generate_params['top_p'],step=0.01,label='top_p')
|
||||
with gr.Column():
|
||||
shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample')
|
||||
shared.gradio['top_k'] = gr.Slider(0,200,value=generate_params['top_k'],step=1,label='top_k')
|
||||
shared.gradio['typical_p'] = gr.Slider(0.0,1.0,value=generate_params['typical_p'],step=0.01,label='typical_p')
|
||||
with gr.Column():
|
||||
shared.gradio['repetition_penalty'] = gr.Slider(1.0, 1.5, value=generate_params['repetition_penalty'],step=0.01,label='repetition_penalty')
|
||||
shared.gradio['encoder_repetition_penalty'] = gr.Slider(0.8, 1.5, value=generate_params['encoder_repetition_penalty'],step=0.01,label='encoder_repetition_penalty')
|
||||
shared.gradio['no_repeat_ngram_size'] = gr.Slider(0, 20, step=1, value=generate_params['no_repeat_ngram_size'], label='no_repeat_ngram_size')
|
||||
shared.gradio['min_length'] = gr.Slider(0, 2000, step=1, value=generate_params['min_length'] if shared.args.no_stream else 0, label='min_length', interactive=shared.args.no_stream)
|
||||
shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample')
|
||||
|
||||
gr.Markdown('Contrastive search:')
|
||||
shared.gradio['penalty_alpha'] = gr.Slider(0, 5, value=generate_params['penalty_alpha'], label='penalty_alpha')
|
||||
@ -147,7 +149,7 @@ def create_settings_menus(default_preset):
|
||||
shared.gradio['upload_softprompt'] = gr.File(type='binary', file_types=['.zip'])
|
||||
|
||||
shared.gradio['model_menu'].change(load_model_wrapper, [shared.gradio['model_menu']], [shared.gradio['model_menu']], show_progress=True)
|
||||
shared.gradio['preset_menu'].change(load_preset_values, [shared.gradio['preset_menu']], [shared.gradio['do_sample'], shared.gradio['temperature'], shared.gradio['top_p'], shared.gradio['typical_p'], shared.gradio['repetition_penalty'], shared.gradio['top_k'], shared.gradio['min_length'], shared.gradio['no_repeat_ngram_size'], shared.gradio['num_beams'], shared.gradio['penalty_alpha'], shared.gradio['length_penalty'], shared.gradio['early_stopping']])
|
||||
shared.gradio['preset_menu'].change(load_preset_values, [shared.gradio['preset_menu']], [shared.gradio['do_sample'], shared.gradio['temperature'], shared.gradio['top_p'], shared.gradio['typical_p'], shared.gradio['repetition_penalty'], shared.gradio['encoder_repetition_penalty'], shared.gradio['top_k'], shared.gradio['min_length'], shared.gradio['no_repeat_ngram_size'], shared.gradio['num_beams'], shared.gradio['penalty_alpha'], shared.gradio['length_penalty'], shared.gradio['early_stopping']])
|
||||
shared.gradio['softprompts_menu'].change(load_soft_prompt, [shared.gradio['softprompts_menu']], [shared.gradio['softprompts_menu']], show_progress=True)
|
||||
shared.gradio['upload_softprompt'].upload(upload_soft_prompt, [shared.gradio['upload_softprompt']], [shared.gradio['softprompts_menu']])
|
||||
|
||||
@ -262,7 +264,7 @@ if shared.args.chat or shared.args.cai_chat:
|
||||
shared.gradio['chat_generation_attempts'] = gr.Slider(minimum=shared.settings['chat_generation_attempts_min'], maximum=shared.settings['chat_generation_attempts_max'], value=shared.settings['chat_generation_attempts'], step=1, label='Generation attempts (for longer replies)')
|
||||
create_settings_menus(default_preset)
|
||||
|
||||
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'name1', 'name2', 'context', 'check', 'chat_prompt_size_slider', 'chat_generation_attempts']]
|
||||
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'name1', 'name2', 'context', 'check', 'chat_prompt_size_slider', 'chat_generation_attempts']]
|
||||
if shared.args.extensions is not None:
|
||||
with gr.Tab('Extensions'):
|
||||
extensions_module.create_extensions_block()
|
||||
@ -329,7 +331,7 @@ elif shared.args.notebook:
|
||||
if shared.args.extensions is not None:
|
||||
extensions_module.create_extensions_block()
|
||||
|
||||
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']]
|
||||
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']]
|
||||
output_params = [shared.gradio[k] for k in ['textbox', 'markdown', 'html']]
|
||||
gen_events.append(shared.gradio['Generate'].click(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream, api_name='textgen'))
|
||||
gen_events.append(shared.gradio['textbox'].submit(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream))
|
||||
@ -361,7 +363,7 @@ else:
|
||||
with gr.Tab('HTML'):
|
||||
shared.gradio['html'] = gr.HTML()
|
||||
|
||||
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']]
|
||||
shared.input_params = [shared.gradio[k] for k in ['textbox', 'max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']]
|
||||
output_params = [shared.gradio[k] for k in ['output_textbox', 'markdown', 'html']]
|
||||
gen_events.append(shared.gradio['Generate'].click(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream, api_name='textgen'))
|
||||
gen_events.append(shared.gradio['textbox'].submit(generate_reply, shared.input_params, output_params, show_progress=shared.args.no_stream))
|
||||
|
Loading…
Reference in New Issue
Block a user