mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-29 10:59:32 +01:00
Add tail-free and top-a sampling (#2357)
This commit is contained in:
parent
b4662bf4af
commit
9e7204bef4
@ -15,7 +15,7 @@ from transformers import (AutoConfig, AutoModel, AutoModelForCausalLM,
|
|||||||
BitsAndBytesConfig, LlamaTokenizer)
|
BitsAndBytesConfig, LlamaTokenizer)
|
||||||
|
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
from modules import llama_attn_hijack
|
from modules import llama_attn_hijack, sampler_hijack
|
||||||
from modules.logging_colors import logger
|
from modules.logging_colors import logger
|
||||||
|
|
||||||
transformers.logging.set_verbosity_error()
|
transformers.logging.set_verbosity_error()
|
||||||
@ -36,6 +36,8 @@ if shared.args.deepspeed:
|
|||||||
ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir)
|
ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir)
|
||||||
dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
|
dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
|
||||||
|
|
||||||
|
sampler_hijack.hijack_samplers()
|
||||||
|
|
||||||
|
|
||||||
# Some models require special treatment in various parts of the code.
|
# Some models require special treatment in various parts of the code.
|
||||||
# This function detects those models
|
# This function detects those models
|
||||||
|
102
modules/sampler_hijack.py
Normal file
102
modules/sampler_hijack.py
Normal file
@ -0,0 +1,102 @@
|
|||||||
|
import torch
|
||||||
|
import transformers
|
||||||
|
from transformers import LogitsWarper
|
||||||
|
from transformers.generation.logits_process import LogitNormalization, LogitsProcessorList
|
||||||
|
|
||||||
|
|
||||||
|
class TailFreeLogitsWarper(LogitsWarper):
|
||||||
|
def __init__(self, tfs: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
|
||||||
|
tfs = float(tfs)
|
||||||
|
if tfs < 0 or tfs > 1.0:
|
||||||
|
raise ValueError(f"`tfs` has to be a float >= 0 and <= 1, but is {tfs}")
|
||||||
|
self.tfs = tfs
|
||||||
|
self.filter_value = filter_value
|
||||||
|
self.min_tokens_to_keep = min_tokens_to_keep
|
||||||
|
|
||||||
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
||||||
|
sorted_logits, sorted_indices = torch.sort(scores, descending=True)
|
||||||
|
probs = sorted_logits.softmax(dim=-1)
|
||||||
|
|
||||||
|
# Compute second derivative normalized CDF
|
||||||
|
d2 = probs.diff().diff().abs()
|
||||||
|
normalized_d2 = d2 / d2.sum(dim=-1, keepdim=True)
|
||||||
|
normalized_d2_cdf = normalized_d2.cumsum(dim=-1)
|
||||||
|
|
||||||
|
# Remove tokens with CDF value above the threshold (token with 0 are kept)
|
||||||
|
sorted_indices_to_remove = normalized_d2_cdf > self.tfs
|
||||||
|
|
||||||
|
# Centre the distribution around the cutoff as in the original implementation of the algorithm
|
||||||
|
sorted_indices_to_remove = torch.cat(
|
||||||
|
(
|
||||||
|
torch.zeros(scores.shape[0], 1, dtype=torch.bool, device=scores.device),
|
||||||
|
sorted_indices_to_remove,
|
||||||
|
torch.ones(scores.shape[0], 1, dtype=torch.bool, device=scores.device),
|
||||||
|
),
|
||||||
|
dim=-1,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.min_tokens_to_keep > 1:
|
||||||
|
# Keep at least min_tokens_to_keep
|
||||||
|
sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0
|
||||||
|
|
||||||
|
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
||||||
|
scores = scores.masked_fill(indices_to_remove, self.filter_value)
|
||||||
|
return scores
|
||||||
|
|
||||||
|
|
||||||
|
class TopALogitsWarper(LogitsWarper):
|
||||||
|
def __init__(self, top_a: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
|
||||||
|
top_a = float(top_a)
|
||||||
|
if top_a < 0 or top_a > 1.0:
|
||||||
|
raise ValueError(f"`top_a` has to be a float >= 0 and <= 1, but is {top_a}")
|
||||||
|
self.top_a = top_a
|
||||||
|
self.filter_value = filter_value
|
||||||
|
self.min_tokens_to_keep = min_tokens_to_keep
|
||||||
|
|
||||||
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
||||||
|
sorted_logits, sorted_indices = torch.sort(scores, descending=True)
|
||||||
|
probs = sorted_logits.softmax(dim=-1)
|
||||||
|
|
||||||
|
# Remove tokens with probability less than top_a*(max(probs))^2 (token with 0 are kept)
|
||||||
|
probs_max = probs[..., 0, None]
|
||||||
|
sorted_indices_to_remove = probs < probs_max * probs_max * self.top_a
|
||||||
|
|
||||||
|
if self.min_tokens_to_keep > 1:
|
||||||
|
# Keep at least min_tokens_to_keep
|
||||||
|
sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0
|
||||||
|
|
||||||
|
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
||||||
|
scores = scores.masked_fill(indices_to_remove, self.filter_value)
|
||||||
|
return scores
|
||||||
|
|
||||||
|
|
||||||
|
def get_logits_warper_patch(self, generation_config):
|
||||||
|
warpers = self._get_logits_warper_old(generation_config)
|
||||||
|
warpers_to_add = LogitsProcessorList()
|
||||||
|
min_tokens_to_keep = 2 if generation_config.num_beams > 1 else 1
|
||||||
|
|
||||||
|
if generation_config.tfs is not None and 0.0 <= generation_config.tfs <= 1.0:
|
||||||
|
warpers_to_add.append(TailFreeLogitsWarper(tfs=generation_config.tfs, min_tokens_to_keep=min_tokens_to_keep))
|
||||||
|
if generation_config.top_a is not None and 0.0 <= generation_config.top_a <= 1.0:
|
||||||
|
warpers_to_add.append(TopALogitsWarper(top_a=generation_config.top_a, min_tokens_to_keep=min_tokens_to_keep))
|
||||||
|
|
||||||
|
if warpers and isinstance(warpers[-1], LogitNormalization):
|
||||||
|
warpers = warpers[:-1] + warpers_to_add + [warpers[-1]]
|
||||||
|
else:
|
||||||
|
warpers += warpers_to_add
|
||||||
|
|
||||||
|
return warpers
|
||||||
|
|
||||||
|
|
||||||
|
def generation_config_init_patch(self, **kwargs):
|
||||||
|
self.__init___old(**kwargs)
|
||||||
|
self.tfs = kwargs.pop("tfs", 1.0)
|
||||||
|
self.top_a = kwargs.pop("top_a", 0.0)
|
||||||
|
|
||||||
|
|
||||||
|
def hijack_samplers():
|
||||||
|
transformers.GenerationMixin._get_logits_warper_old = transformers.GenerationMixin._get_logits_warper
|
||||||
|
transformers.GenerationMixin._get_logits_warper = get_logits_warper_patch
|
||||||
|
|
||||||
|
transformers.GenerationConfig.__init___old = transformers.GenerationConfig.__init__
|
||||||
|
transformers.GenerationConfig.__init__ = generation_config_init_patch
|
@ -194,7 +194,7 @@ def _generate_reply(question, state, eos_token=None, stopping_strings=None, is_c
|
|||||||
|
|
||||||
def generate_reply_HF(question, original_question, seed, state, eos_token=None, stopping_strings=None, is_chat=False):
|
def generate_reply_HF(question, original_question, seed, state, eos_token=None, stopping_strings=None, is_chat=False):
|
||||||
generate_params = {}
|
generate_params = {}
|
||||||
for k in ['max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']:
|
for k in ['max_new_tokens', 'do_sample', 'temperature', 'top_p', 'typical_p', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'tfs', 'top_a']:
|
||||||
generate_params[k] = state[k]
|
generate_params[k] = state[k]
|
||||||
|
|
||||||
for k in ['epsilon_cutoff', 'eta_cutoff']:
|
for k in ['epsilon_cutoff', 'eta_cutoff']:
|
||||||
|
@ -38,7 +38,7 @@ def list_model_elements():
|
|||||||
|
|
||||||
|
|
||||||
def list_interface_input_elements(chat=False):
|
def list_interface_input_elements(chat=False):
|
||||||
elements = ['max_new_tokens', 'seed', 'temperature', 'top_p', 'top_k', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', 'encoder_repetition_penalty', 'no_repeat_ngram_size', 'min_length', 'do_sample', 'penalty_alpha', 'num_beams', 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'add_bos_token', 'ban_eos_token', 'truncation_length', 'custom_stopping_strings', 'skip_special_tokens', 'preset_menu', 'stream']
|
elements = ['max_new_tokens', 'seed', 'temperature', 'top_p', 'top_k', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', 'encoder_repetition_penalty', 'no_repeat_ngram_size', 'min_length', 'do_sample', 'penalty_alpha', 'num_beams', 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'add_bos_token', 'ban_eos_token', 'truncation_length', 'custom_stopping_strings', 'skip_special_tokens', 'preset_menu', 'stream', 'tfs', 'top_a']
|
||||||
if chat:
|
if chat:
|
||||||
elements += ['name1', 'name2', 'greeting', 'context', 'chat_prompt_size', 'chat_generation_attempts', 'stop_at_newline', 'mode', 'instruction_template', 'character_menu', 'name1_instruct', 'name2_instruct', 'context_instruct', 'turn_template', 'chat_style', 'chat-instruct_command']
|
elements += ['name1', 'name2', 'greeting', 'context', 'chat_prompt_size', 'chat_generation_attempts', 'stop_at_newline', 'mode', 'instruction_template', 'character_menu', 'name1_instruct', 'name2_instruct', 'context_instruct', 'turn_template', 'chat_style', 'chat-instruct_command']
|
||||||
|
|
||||||
|
@ -101,6 +101,8 @@ def load_preset_values(preset_menu, state, return_dict=False):
|
|||||||
'mirostat_mode': 0,
|
'mirostat_mode': 0,
|
||||||
'mirostat_tau': 5.0,
|
'mirostat_tau': 5.0,
|
||||||
'mirostat_eta': 0.1,
|
'mirostat_eta': 0.1,
|
||||||
|
'tfs': 1,
|
||||||
|
'top_a': 0,
|
||||||
}
|
}
|
||||||
|
|
||||||
with open(Path(f'presets/{preset_menu}.yaml'), 'r') as infile:
|
with open(Path(f'presets/{preset_menu}.yaml'), 'r') as infile:
|
||||||
@ -114,7 +116,7 @@ def load_preset_values(preset_menu, state, return_dict=False):
|
|||||||
return generate_params
|
return generate_params
|
||||||
else:
|
else:
|
||||||
state.update(generate_params)
|
state.update(generate_params)
|
||||||
return state, *[generate_params[k] for k in ['do_sample', 'temperature', 'top_p', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta']]
|
return state, *[generate_params[k] for k in ['do_sample', 'temperature', 'top_p', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'tfs', 'top_a']]
|
||||||
|
|
||||||
|
|
||||||
def upload_soft_prompt(file):
|
def upload_soft_prompt(file):
|
||||||
@ -476,6 +478,8 @@ def create_settings_menus(default_preset):
|
|||||||
shared.gradio['typical_p'] = gr.Slider(0.0, 1.0, value=generate_params['typical_p'], step=0.01, label='typical_p', info='If not set to 1, select only tokens that are at least this much more likely to appear than random tokens, given the prior text.')
|
shared.gradio['typical_p'] = gr.Slider(0.0, 1.0, value=generate_params['typical_p'], step=0.01, label='typical_p', info='If not set to 1, select only tokens that are at least this much more likely to appear than random tokens, given the prior text.')
|
||||||
shared.gradio['epsilon_cutoff'] = gr.Slider(0, 9, value=generate_params['epsilon_cutoff'], step=0.01, label='epsilon_cutoff', info='In units of 1e-4; a reasonable value is 3. This sets a probability floor below which tokens are excluded from being sampled. Should be used with top_p, top_k, and eta_cutoff set to 0.')
|
shared.gradio['epsilon_cutoff'] = gr.Slider(0, 9, value=generate_params['epsilon_cutoff'], step=0.01, label='epsilon_cutoff', info='In units of 1e-4; a reasonable value is 3. This sets a probability floor below which tokens are excluded from being sampled. Should be used with top_p, top_k, and eta_cutoff set to 0.')
|
||||||
shared.gradio['eta_cutoff'] = gr.Slider(0, 20, value=generate_params['eta_cutoff'], step=0.01, label='eta_cutoff', info='In units of 1e-4; a reasonable value is 3. Should be used with top_p, top_k, and epsilon_cutoff set to 0.')
|
shared.gradio['eta_cutoff'] = gr.Slider(0, 20, value=generate_params['eta_cutoff'], step=0.01, label='eta_cutoff', info='In units of 1e-4; a reasonable value is 3. Should be used with top_p, top_k, and epsilon_cutoff set to 0.')
|
||||||
|
shared.gradio['tfs'] = gr.Slider(0.0, 1.0, value=generate_params['tfs'], step=0.01, label='tfs')
|
||||||
|
shared.gradio['top_a'] = gr.Slider(0.0, 1.0, value=generate_params['top_a'], step=0.01, label='top_a')
|
||||||
|
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
shared.gradio['repetition_penalty'] = gr.Slider(1.0, 1.5, value=generate_params['repetition_penalty'], step=0.01, label='repetition_penalty', info='Exponential penalty factor for repeating prior tokens. 1 means no penalty, higher value = less repetition, lower value = more repetition.')
|
shared.gradio['repetition_penalty'] = gr.Slider(1.0, 1.5, value=generate_params['repetition_penalty'], step=0.01, label='repetition_penalty', info='Exponential penalty factor for repeating prior tokens. 1 means no penalty, higher value = less repetition, lower value = more repetition.')
|
||||||
@ -526,7 +530,7 @@ def create_settings_menus(default_preset):
|
|||||||
|
|
||||||
gr.Markdown('[Click here for more information.](https://github.com/oobabooga/text-generation-webui/blob/main/docs/Generation-parameters.md)')
|
gr.Markdown('[Click here for more information.](https://github.com/oobabooga/text-generation-webui/blob/main/docs/Generation-parameters.md)')
|
||||||
|
|
||||||
shared.gradio['preset_menu'].change(load_preset_values, [shared.gradio[k] for k in ['preset_menu', 'interface_state']], [shared.gradio[k] for k in ['interface_state', 'do_sample', 'temperature', 'top_p', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta']])
|
shared.gradio['preset_menu'].change(load_preset_values, [shared.gradio[k] for k in ['preset_menu', 'interface_state']], [shared.gradio[k] for k in ['interface_state', 'do_sample', 'temperature', 'top_p', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'tfs', 'top_a']])
|
||||||
shared.gradio['softprompts_menu'].change(load_soft_prompt, shared.gradio['softprompts_menu'], shared.gradio['softprompts_menu'], show_progress=True)
|
shared.gradio['softprompts_menu'].change(load_soft_prompt, shared.gradio['softprompts_menu'], shared.gradio['softprompts_menu'], show_progress=True)
|
||||||
shared.gradio['upload_softprompt'].upload(upload_soft_prompt, shared.gradio['upload_softprompt'], shared.gradio['softprompts_menu'])
|
shared.gradio['upload_softprompt'].upload(upload_soft_prompt, shared.gradio['upload_softprompt'], shared.gradio['softprompts_menu'])
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user