Merge pull request #3163 from oobabooga/dev

v1.2
This commit is contained in:
oobabooga 2023-07-16 02:43:18 -03:00 committed by GitHub
commit 9f08038864
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 399 additions and 18 deletions

View File

@ -62,7 +62,7 @@ class ModelDownloader:
is_lora = False
while True:
url = f"{base}{page}" + (f"?cursor={cursor.decode()}" if cursor else "")
r = self.s.get(url, timeout=20)
r = self.s.get(url, timeout=10)
r.raise_for_status()
content = r.content
@ -136,7 +136,7 @@ class ModelDownloader:
if output_path.exists() and not start_from_scratch:
# Check if the file has already been downloaded completely
r = self.s.get(url, stream=True, timeout=20)
r = self.s.get(url, stream=True, timeout=10)
total_size = int(r.headers.get('content-length', 0))
if output_path.stat().st_size >= total_size:
return
@ -145,7 +145,7 @@ class ModelDownloader:
headers = {'Range': f'bytes={output_path.stat().st_size}-'}
mode = 'ab'
with self.s.get(url, stream=True, headers=headers, timeout=20) as r:
with self.s.get(url, stream=True, headers=headers, timeout=10) as r:
r.raise_for_status() # Do not continue the download if the request was unsuccessful
total_size = int(r.headers.get('content-length', 0))
block_size = 1024 * 1024 # 1MB

View File

@ -0,0 +1,215 @@
import gradio
import torch
from transformers import LogitsProcessor
import numpy as np
from modules import shared
params = {
'color_by_perplexity': False,
'color_by_probability': False,
'ppl_scale': 15.0, # No slider for this right now, because I don't think it really needs to be changed. Very large perplexity scores don't show up often.
#'probability_dropdown': False
}
class PerplexityLogits(LogitsProcessor):
def __init__(self, verbose=False):
self.generated_token_ids = []
self.selected_probs = []
self.top_token_ids_list = []
self.top_probs_list = []
self.perplexities_list = []
self.last_probs = None
self.verbose = verbose
def __call__(self, input_ids, scores):
probs = torch.softmax(scores, dim=-1, dtype=torch.float)
log_probs = torch.nan_to_num(torch.log(probs))
entropy = -torch.sum(probs*log_probs)
entropy = entropy.cpu().numpy()
perplexity = round(float(np.exp(entropy)), 4)
self.perplexities_list.append(perplexity)
last_token_id = int(input_ids[0][-1].cpu().numpy().item())
# Store the generated tokens (not sure why this isn't accessible in the output endpoint!)
self.generated_token_ids.append(last_token_id)
# Get last probability, and add to the list if it wasn't there
if len(self.selected_probs) > 0:
# Is the selected token in the top tokens?
if self.verbose:
print(shared.tokenizer.decode(last_token_id))
print([shared.tokenizer.decode(token_id) for token_id in self.top_token_ids_list[-1]])
print(self.top_probs_list[-1])
if last_token_id in self.top_token_ids_list[-1]:
idx = self.top_token_ids_list[-1].index(last_token_id)
self.selected_probs.append(self.top_probs_list[-1][idx])
else:
self.top_token_ids_list[-1].append(last_token_id)
last_prob = round(float(self.last_probs[last_token_id]), 4)
self.top_probs_list[-1].append(last_prob)
self.selected_probs.append(last_prob)
else:
self.selected_probs.append(1.0) # Placeholder for the last token of the prompt
if self.verbose:
pplbar = "-"
if not np.isnan(perplexity):
pplbar = "*"*round(perplexity)
print(f"{last_token}\t{perplexity:.2f}\t{pplbar}")
# Get top 5 probabilities
top_tokens_and_probs = torch.topk(probs, 5)
top_probs = top_tokens_and_probs.values.cpu().numpy().astype(float).tolist()
top_token_ids = top_tokens_and_probs.indices.cpu().numpy().astype(int).tolist()
self.top_token_ids_list.append(top_token_ids)
self.top_probs_list.append(top_probs)
probs = probs.cpu().numpy().flatten()
self.last_probs = probs # Need to keep this as a reference for top probs
# Doesn't actually modify the logits!
return scores
# Stores the perplexity and top probabilities
ppl_logits_processor = None
def logits_processor_modifier(logits_processor_list, input_ids):
global ppl_logits_processor
ppl_logits_processor = PerplexityLogits()
logits_processor_list.append(ppl_logits_processor)
def output_modifier(text):
global ppl_logits_processor
# TODO: It's probably more efficient to do this above rather than modifying all these lists
# Remove last element of perplexities_list, top_token_ids_list, top_tokens_list, top_probs_list since everything is off by one because this extension runs before generation
perplexities = ppl_logits_processor.perplexities_list[:-1]
top_token_ids_list = ppl_logits_processor.top_token_ids_list[:-1]
top_tokens_list = [[shared.tokenizer.decode(token_id) for token_id in top_token_ids] for top_token_ids in top_token_ids_list]
top_probs_list = ppl_logits_processor.top_probs_list[:-1]
# Remove first element of generated_token_ids, generated_tokens, selected_probs because they are for the last token of the prompt
gen_token_ids = ppl_logits_processor.generated_token_ids[1:]
gen_tokens = [shared.tokenizer.decode(token_id) for token_id in gen_token_ids]
sel_probs = ppl_logits_processor.selected_probs[1:]
end_part = '</span>' # Helps with finding the index after replacing part of the text.
in_code = False # Since the <span> tags mess up code blocks, avoid coloring while inside a code block, based on finding tokens with '`' in them
if params['color_by_probability'] and params['color_by_perplexity']:
i = 0
for token, prob, ppl, top_tokens, top_probs in zip(gen_tokens, sel_probs, perplexities, top_tokens_list, top_probs_list):
if '`' in token:
in_code = not in_code
continue
if in_code:
continue
color = probability_perplexity_color_scale(prob, ppl)
if token in text[i:]:
text = text[:i] + text[i:].replace(token, add_color_html(token, color), 1)
i += text[i:].find(end_part) + len(end_part)
elif params['color_by_perplexity']:
i = 0
for token, ppl, top_tokens, top_probs in zip(gen_tokens, perplexities, top_tokens_list, top_probs_list):
if '`' in token:
in_code = not in_code
continue
if in_code:
continue
color = perplexity_color_scale(ppl)
if token in text[i:]:
text = text[:i] + text[i:].replace(token, add_color_html(token, color), 1)
i += text[i:].find(end_part) + len(end_part)
elif params['color_by_probability']:
i = 0
for token, prob, top_tokens, top_probs in zip(gen_tokens, sel_probs, top_tokens_list, top_probs_list):
if '`' in token:
in_code = not in_code
continue
if in_code:
continue
color = probability_color_scale(prob)
if token in text[i:]:
text = text[:i] + text[i:].replace(token, add_color_html(token, color), 1)
i += text[i:].find(end_part) + len(end_part)
print('Average perplexity:', round(np.mean(perplexities), 4))
return text
# Green-yellow-red color scale
def probability_color_scale(prob):
rv = 0
gv = 0
if prob <= 0.5:
rv = 'ff'
gv = hex(int(255*prob*2))[2:]
if len(gv) < 2:
gv = '0'*(2 - len(gv)) + gv
else:
rv = hex(int(255 - 255*(prob - 0.5)*2))[2:]
gv = 'ff'
if len(rv) < 2:
rv = '0'*(2 - len(rv)) + rv
return rv + gv + '00'
# Red component only, white for 0 perplexity (sorry if you're not in dark mode)
def perplexity_color_scale(ppl):
value = hex(max(int(255.0 - params['ppl_scale']*(float(ppl)-1.0)), 0))[2:]
if len(value) < 2:
value = '0'*(2 - len(value)) + value
return 'ff' + value + value
# Green-yellow-red for probability and blue component for perplexity
def probability_perplexity_color_scale(prob, ppl):
rv = 0
gv = 0
bv = hex(min(max(int(params['ppl_scale']*(float(ppl)-1.0)), 0), 255))[2:]
if len(bv) < 2:
bv = '0'*(2 - len(bv)) + bv
if prob <= 0.5:
rv = 'ff'
gv = hex(int(255*prob*2))[2:]
if len(gv) < 2:
gv = '0'*(2 - len(gv)) + gv
else:
rv = hex(int(255 - 255*(prob - 0.5)*2))[2:]
gv = 'ff'
if len(rv) < 2:
rv = '0'*(2 - len(rv)) + rv
return rv + gv + bv
def add_color_html(token, color):
return f'<span style="color: #{color}">{token}</span>'
"""
# This is still very broken at the moment, needs CSS too but I'm not very good at CSS (and neither is GPT-4 apparently) so I still need to figure that out.
def add_dropdown_html(token, color, top_tokens, top_probs):
html = f'<span class="hoverable" style="color: #{color}">{token}<div class="dropdown"><table class="dropdown-content">'
for token, prob in zip(top_tokens, top_probs):
# TODO: Background color? Bold for selected token?
# Bigger issue: Why is there a newline after the first token, and the dropdown fails there?
# The HTML ends up like <p><span>word</span></p><div>...</div>,
# even though for all other tokens it shows up correctly.
row_color = probability_color_scale(prob)
html += f'<tr><td style="color: #{row_color}">{token}</td><td style="color: #{row_color}">{prob}</td></tr>'
html += '</table></div></span>'
return html
"""
def ui():
color_by_ppl_check = gradio.Checkbox(value=False, label="Color by perplexity", info="Higher perplexity is more red. If also showing probability, higher perplexity has more blue component.")
def update_color_by_ppl_check(x):
params.update({'color_by_perplexity': x})
color_by_ppl_check.change(update_color_by_ppl_check, color_by_ppl_check, None)
color_by_prob_check = gradio.Checkbox(value=False, label="Color by probability", info="Green-yellow-red linear scale, with 100% green, 50% yellow, 0% red.")
def update_color_by_prob_check(x):
params.update({'color_by_probability': x})
color_by_prob_check.change(update_color_by_prob_check, color_by_prob_check, None)
# Doesn't work yet...
"""
prob_dropdown_check = gradio.Checkbox(value=False, label="Probability dropdown")
def update_prob_dropdown_check(x):
params.update({'probability_dropdown': x})
prob_dropdown_check.change(update_prob_dropdown_check, prob_dropdown_check, None)
"""

View File

@ -29,6 +29,7 @@ class ExllamaHF(PreTrainedModel):
super().__init__(PretrainedConfig())
self.ex_config = config
self.ex_model = ExLlama(self.ex_config)
self.ex_cache = ExLlamaCache(self.ex_model)
self.generation_config = GenerationConfig()
self.lora = None
@ -52,11 +53,20 @@ class ExllamaHF(PreTrainedModel):
labels = kwargs.get('labels', None)
seq = kwargs['input_ids'][0].tolist()
cache = kwargs['past_key_values'] if 'past_key_values' in kwargs else None
if labels is None:
if cache is None:
cache = ExLlamaCache(self.ex_model)
self.ex_cache.current_seq_len = 0
cache = self.ex_cache
self.ex_model.forward(torch.tensor([seq[:-1]], dtype=torch.long), cache, preprocess_only=True, lora=self.lora)
logits = self.ex_model.forward(torch.tensor([seq[-1:]], dtype=torch.long), cache, lora=self.lora).to(kwargs['input_ids'].device)
else:
if cache is None:
self.ex_cache.current_seq_len = 0
cache = self.ex_cache
logits = self.ex_model.forward(torch.tensor([seq], dtype=torch.long), cache, last_id_only=False, lora=self.lora)
loss = None
if labels is not None:
@ -71,7 +81,7 @@ class ExllamaHF(PreTrainedModel):
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
return CausalLMOutputWithPast(logits=logits, past_key_values=cache if use_cache else None)
return CausalLMOutputWithPast(logits=logits, past_key_values=cache if use_cache else None, loss=loss)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):

View File

@ -106,15 +106,23 @@ def _apply_history_modifier_extensions(history):
return history
# Extension functions that override the default tokenizer output - currently only the first one will work
# Extension functions that override the default tokenizer output - The order of execution is not defined
def _apply_tokenizer_extensions(function_name, state, prompt, input_ids, input_embeds):
for extension, _ in iterator():
if hasattr(extension, function_name):
return getattr(extension, function_name)(state, prompt, input_ids, input_embeds)
prompt, input_ids, input_embeds = getattr(extension, function_name)(state, prompt, input_ids, input_embeds)
return prompt, input_ids, input_embeds
# Allow extensions to add their own logits processors to the stack being run.
# Each extension would call `processor_list.append({their LogitsProcessor}())`.
def _apply_logits_processor_extensions(function_name, processor_list, input_ids):
for extension, _ in iterator():
if hasattr(extension, function_name):
getattr(extension, function_name)(processor_list, input_ids)
# Get prompt length in tokens after applying extension functions which override the default tokenizer output
# currently only the first one will work
def _apply_custom_tokenized_length(prompt):
@ -183,6 +191,7 @@ EXTENSION_MAP = {
"history": _apply_history_modifier_extensions,
"bot_prefix": partial(_apply_string_extensions, "bot_prefix_modifier"),
"tokenizer": partial(_apply_tokenizer_extensions, "tokenizer_modifier"),
'logits_processor': partial(_apply_logits_processor_extensions, 'logits_processor_modifier'),
"input_hijack": _apply_input_hijack,
"custom_generate_chat_prompt": _apply_custom_generate_chat_prompt,
"custom_generate_reply": _apply_custom_generate_reply,

103
modules/llamacpp_hf.py Normal file
View File

@ -0,0 +1,103 @@
import os
from pathlib import Path
from typing import Any, Dict, Optional, Union
import torch
from llama_cpp import Llama
from torch.nn import CrossEntropyLoss
from transformers import GenerationConfig, PretrainedConfig, PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
from modules import shared
from modules.logging_colors import logger
class LlamacppHF(PreTrainedModel):
def __init__(self, model):
super().__init__(PretrainedConfig())
self.model = model
self.generation_config = GenerationConfig()
self.cache = None
def _validate_model_class(self):
pass
def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]):
pass
def prepare_inputs_for_generation(self, input_ids, **kwargs):
return {'input_ids': input_ids, **kwargs}
@property
def device(self) -> torch.device:
return torch.device(0)
def __call__(self, *args, **kwargs):
# TODO: Some decoding methods (such as Contrastive Search) may not work at this time
assert len(args) == 0, 'no *args should be passed to forward'
use_cache = kwargs.get('use_cache', True)
labels = kwargs.get('labels', None)
seq = kwargs['input_ids'][0].tolist()
cache = kwargs['past_key_values'] if 'past_key_values' in kwargs else None
# Make the forward call
seq_tensor = torch.tensor(seq)
self.cache = seq_tensor
if labels is None:
if self.cache is None or not torch.equal(self.cache, seq_tensor[:-1]):
self.model.reset()
self.model.eval(seq)
else:
self.model.eval([seq[-1]])
logits = torch.tensor(self.model.eval_logits)[-1].view(1, 1, -1).to(kwargs['input_ids'].device)
else:
self.model.reset()
self.model.eval(seq)
logits = torch.tensor(self.model.eval_logits)
logits = logits.view(1, logits.shape[0], logits.shape[1]).to(kwargs['input_ids'].device)
# Based on transformers/models/llama/modeling_llama.py
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, logits.shape[-1])
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
return CausalLMOutputWithPast(logits=logits, past_key_values=cache if use_cache else None, loss=loss)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
assert len(model_args) == 0 and len(kwargs) == 0, "extra args is currently not supported"
if isinstance(pretrained_model_name_or_path, str):
pretrained_model_name_or_path = Path(pretrained_model_name_or_path)
path = Path(f'{shared.args.model_dir}') / Path(pretrained_model_name_or_path)
if path.is_file():
model_file = path
else:
model_file = list(path.glob('*ggml*.bin'))[0]
logger.info(f"llama.cpp weights detected: {model_file}\n")
params = {
'model_path': str(model_file),
'n_ctx': shared.args.n_ctx,
'seed': int(shared.args.llama_cpp_seed),
'n_threads': shared.args.threads or None,
'n_batch': shared.args.n_batch,
'use_mmap': not shared.args.no_mmap,
'use_mlock': shared.args.mlock,
'low_vram': shared.args.low_vram,
'n_gpu_layers': shared.args.n_gpu_layers,
'logits_all': True,
}
model = Llama(**params)
return LlamacppHF(model)

View File

@ -38,6 +38,17 @@ loaders_and_params = {
'mlock',
'llama_cpp_seed',
],
'llamacpp_HF': [
'n_ctx',
'n_gpu_layers',
'n_batch',
'threads',
'no_mmap',
'low_vram',
'mlock',
'llama_cpp_seed',
'llamacpp_HF_info',
],
'Transformers': [
'cpu_memory',
'gpu_memory',

View File

@ -55,6 +55,7 @@ def load_model(model_name, loader=None):
'AutoGPTQ': AutoGPTQ_loader,
'GPTQ-for-LLaMa': GPTQ_loader,
'llama.cpp': llamacpp_loader,
'llamacpp_HF': llamacpp_HF_loader,
'FlexGen': flexgen_loader,
'RWKV': RWKV_loader,
'ExLlama': ExLlama_loader,
@ -268,6 +269,27 @@ def llamacpp_loader(model_name):
return model, tokenizer
def llamacpp_HF_loader(model_name):
from modules.llamacpp_hf import LlamacppHF
for fname in ["oobabooga_llama-tokenizer", "llama-tokenizer"]:
path = Path(f'{shared.args.model_dir}/{fname}')
if path.exists():
break
else:
logger.error("Could not load the model because a tokenizer in transformers format was not found. Please download oobabooga/llama-tokenizer.")
return None, None
tokenizer = AutoTokenizer.from_pretrained(
path,
trust_remote_code=shared.args.trust_remote_code,
use_fast=False
)
model = LlamacppHF.from_pretrained(model_name)
return model, tokenizer
def GPTQ_loader(model_name):
# Monkey patch

View File

@ -214,6 +214,8 @@ def fix_loader_name(name):
name = name.lower()
if name in ['llamacpp', 'llama.cpp', 'llama-cpp', 'llama cpp']:
return 'llama.cpp'
if name in ['llamacpp_hf', 'llama.cpp_hf', 'llama-cpp-hf', 'llamacpp-hf', 'llama.cpp-hf']:
return 'llamacpp_HF'
elif name in ['transformers', 'huggingface', 'hf', 'hugging_face', 'hugging face']:
return 'Transformers'
elif name in ['autogptq', 'auto-gptq', 'auto_gptq', 'auto gptq']:

View File

@ -8,6 +8,7 @@ import traceback
import numpy as np
import torch
import transformers
from transformers import LogitsProcessorList
import modules.shared as shared
from modules.callbacks import (
@ -264,6 +265,13 @@ def generate_reply_HF(question, original_question, seed, state, stopping_strings
generate_params['stopping_criteria'] = transformers.StoppingCriteriaList()
generate_params['stopping_criteria'].append(_StopEverythingStoppingCriteria())
processor = state.get('logits_processor', LogitsProcessorList([]))
# In case folks just pass in a processor by itself.
if type(processor) != LogitsProcessorList:
processor = LogitsProcessorList([processor])
apply_extensions('logits_processor', processor, input_ids)
generate_params['logits_processor'] = processor
t0 = time.time()
try:
if not is_chat and not shared.is_seq2seq:

View File

@ -20,10 +20,10 @@ tensorboard
wandb
transformers==4.30.2
git+https://github.com/huggingface/peft@03eb378eb914fbee709ff7c86ba5b1d033b89524
bitsandbytes==0.40.0; platform_system != "Windows"
https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.40.0-py3-none-win_amd64.whl; platform_system == "Windows"
llama-cpp-python==0.1.70; platform_system != "Windows"
https://github.com/abetlen/llama-cpp-python/releases/download/v0.1.70/llama_cpp_python-0.1.70-cp310-cp310-win_amd64.whl; platform_system == "Windows"
bitsandbytes==0.40.1.post1; platform_system != "Windows"
https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.40.1.post1-py3-none-win_amd64.whl; platform_system == "Windows"
llama-cpp-python==0.1.72; platform_system != "Windows"
https://github.com/abetlen/llama-cpp-python/releases/download/v0.1.72/llama_cpp_python-0.1.72-cp310-cp310-win_amd64.whl; platform_system == "Windows"
https://github.com/PanQiWei/AutoGPTQ/releases/download/v0.2.2/auto_gptq-0.2.2+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows"
https://github.com/PanQiWei/AutoGPTQ/releases/download/v0.2.2/auto_gptq-0.2.2+cu117-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
https://github.com/jllllll/exllama/releases/download/0.0.6/exllama-0.0.6+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows"

View File

@ -204,7 +204,7 @@ def create_model_menus():
with gr.Row():
with gr.Column():
shared.gradio['loader'] = gr.Dropdown(label="Model loader", choices=["Transformers", "AutoGPTQ", "GPTQ-for-LLaMa", "ExLlama", "ExLlama_HF", "llama.cpp"], value=None)
shared.gradio['loader'] = gr.Dropdown(label="Model loader", choices=["Transformers", "ExLlama_HF", "ExLlama", "AutoGPTQ", "GPTQ-for-LLaMa", "llama.cpp", "llamacpp_HF"], value=None)
with gr.Box():
with gr.Row():
with gr.Column():
@ -223,11 +223,11 @@ def create_model_menus():
shared.gradio['groupsize'] = gr.Dropdown(label="groupsize", choices=["None", 32, 64, 128, 1024], value=str(shared.args.groupsize) if shared.args.groupsize > 0 else "None")
shared.gradio['model_type'] = gr.Dropdown(label="model_type", choices=["None", "llama", "opt", "gptj"], value=shared.args.model_type or "None")
shared.gradio['pre_layer'] = gr.Slider(label="pre_layer", minimum=0, maximum=100, value=shared.args.pre_layer[0] if shared.args.pre_layer is not None else 0)
shared.gradio['autogptq_info'] = gr.Markdown('On some systems, AutoGPTQ can be 2x slower than GPTQ-for-LLaMa. You can manually select the GPTQ-for-LLaMa loader above.')
shared.gradio['autogptq_info'] = gr.Markdown('* ExLlama_HF is recommended over AutoGPTQ for models derived from LLaMA.')
shared.gradio['gpu_split'] = gr.Textbox(label='gpu-split', info='Comma-separated list of VRAM (in GB) to use per GPU. Example: 20,7,7')
shared.gradio['max_seq_len'] = gr.Slider(label='max_seq_len', minimum=2048, maximum=16384, step=256, info='Maximum sequence length.', value=shared.args.max_seq_len)
shared.gradio['compress_pos_emb'] = gr.Slider(label='compress_pos_emb', minimum=1, maximum=8, step=1, info='Positional embeddings compression factor. Should typically be set to max_seq_len / 2048.', value=shared.args.compress_pos_emb)
shared.gradio['alpha_value'] = gr.Slider(label='alpha_value', minimum=1, maximum=8, step=1, info='Positional embeddings alpha factor for NTK RoPE scaling. Same as above. Use either this or compress_pos_emb, not both.', value=shared.args.alpha_value)
shared.gradio['alpha_value'] = gr.Slider(label='alpha_value', minimum=1, maximum=32, step=1, info='Positional embeddings alpha factor for NTK RoPE scaling. Scaling is not identical to embedding compression. Use either this or compress_pos_emb, not both.', value=shared.args.alpha_value)
with gr.Column():
shared.gradio['triton'] = gr.Checkbox(label="triton", value=shared.args.triton)
@ -250,6 +250,7 @@ def create_model_menus():
shared.gradio['gptq_for_llama_info'] = gr.Markdown('GPTQ-for-LLaMa is currently 2x faster than AutoGPTQ on some systems. It is installed by default with the one-click installers. Otherwise, it has to be installed manually following the instructions here: [instructions](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#installation-1).')
shared.gradio['exllama_info'] = gr.Markdown('For more information, consult the [docs](https://github.com/oobabooga/text-generation-webui/blob/main/docs/ExLlama.md).')
shared.gradio['exllama_HF_info'] = gr.Markdown('ExLlama_HF is a wrapper that lets you use ExLlama like a Transformers model, which means it can use the Transformers samplers. It\'s a bit slower than the regular ExLlama.')
shared.gradio['llamacpp_HF_info'] = gr.Markdown('llamacpp_HF is a wrapper that lets you use llama.cpp like a Transformers model, which means it can use the Transformers samplers. It works, but it\'s experimental and slow. Contributions are welcome.\n\nTo use it, make sure to first download oobabooga/llama-tokenizer under "Download custom model or LoRA".')
with gr.Column():
with gr.Row():
@ -848,7 +849,7 @@ def create_interface():
# Reset interface event
shared.gradio['reset_interface'].click(
set_interface_arguments, gradio('interface_modes_menu', 'extensions_menu', 'bool_menu'), None).then(
lambda: None, None, None, _js='() => {document.body.innerHTML=\'<h1 style="font-family:monospace;margin-top:20%;color:lightgray;text-align:center;">Reloading...</h1>\'; setTimeout(function(){location.reload()},2500); return []}')
lambda: None, None, None, _js='() => {document.body.innerHTML=\'<h1 style="font-family:monospace;padding-top:20%;margin:0;height:100vh;color:lightgray;text-align:center;background:var(--body-background-fill)">Reloading...</h1>\'; setTimeout(function(){location.reload()},2500); return []}')
shared.gradio['toggle_dark_mode'].click(lambda: None, None, None, _js='() => {document.getElementsByTagName("body")[0].classList.toggle("dark")}')