Add --auto-devices and --load-in-8bit options for #4

This commit is contained in:
oobabooga 2023-01-10 23:16:33 -03:00
parent 3aefcfd963
commit a236b24d24
2 changed files with 46 additions and 20 deletions

View File

@ -85,13 +85,15 @@ Then browse to
Optionally, you can use the following command-line flags: Optionally, you can use the following command-line flags:
``` ```
-h, --help show this help message and exit -h, --help show this help message and exit
--model MODEL Name of the model to load by default. --model MODEL Name of the model to load by default.
--notebook Launch the webui in notebook mode, where the output is written --notebook Launch the webui in notebook mode, where the output is written to the same text
to the same text box as the input. box as the input.
--chat Launch the webui in chat mode. --chat Launch the webui in chat mode.
--cpu Use the CPU to generate text. --cpu Use the CPU to generate text.
--listen Make the webui reachable from your local network. --auto-devices Automatically split the model across the available GPU(s) and CPU.
--load-in-8bit Load the model with 8-bit precision.
--listen Make the webui reachable from your local network.
``` ```
## Presets ## Presets

View File

@ -17,6 +17,8 @@ parser.add_argument('--model', type=str, help='Name of the model to load by defa
parser.add_argument('--notebook', action='store_true', help='Launch the webui in notebook mode, where the output is written to the same text box as the input.') parser.add_argument('--notebook', action='store_true', help='Launch the webui in notebook mode, where the output is written to the same text box as the input.')
parser.add_argument('--chat', action='store_true', help='Launch the webui in chat mode.') parser.add_argument('--chat', action='store_true', help='Launch the webui in chat mode.')
parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text.') parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text.')
parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.')
parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision.')
parser.add_argument('--listen', action='store_true', help='Make the webui reachable from your local network.') parser.add_argument('--listen', action='store_true', help='Make the webui reachable from your local network.')
args = parser.parse_args() args = parser.parse_args()
loaded_preset = None loaded_preset = None
@ -28,23 +30,45 @@ def load_model(model_name):
print(f"Loading {model_name}...") print(f"Loading {model_name}...")
t0 = time.time() t0 = time.time()
# Loading the model # Default settings
if not args.cpu and Path(f"torch-dumps/{model_name}.pt").exists(): if not (args.cpu or args.auto_devices or args.load_in_8bit):
print("Loading in .pt format...") if Path(f"torch-dumps/{model_name}.pt").exists():
model = torch.load(Path(f"torch-dumps/{model_name}.pt")) print("Loading in .pt format...")
elif model_name.lower().startswith(('gpt-neo', 'opt-', 'galactica')) and any(size in model_name.lower() for size in ('13b', '20b', '30b')): model = torch.load(Path(f"torch-dumps/{model_name}.pt"))
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), device_map='auto', load_in_8bit=True) elif model_name.lower().startswith(('gpt-neo', 'opt-', 'galactica')) and any(size in model_name.lower() for size in ('13b', '20b', '30b')):
elif model_name in ['flan-t5', 't5-large']: model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), device_map='auto', load_in_8bit=True)
if args.cpu: elif model_name in ['flan-t5', 't5-large']:
model = T5ForConditionalGeneration.from_pretrained(Path(f"models/{model_name}"))
else:
model = T5ForConditionalGeneration.from_pretrained(Path(f"models/{model_name}")).cuda() model = T5ForConditionalGeneration.from_pretrained(Path(f"models/{model_name}")).cuda()
else:
if args.cpu:
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.float32)
else: else:
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda() model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
# Custom
else:
settings = ["low_cpu_mem_usage=True"]
cuda = ""
if model_name in ['flan-t5', 't5-large']:
command = f"T5ForConditionalGeneration.from_pretrained"
else:
command = "AutoModelForCausalLM.from_pretrained"
if args.cpu:
settings.append("torch_dtype=torch.float32")
else:
if args.load_in_8bit:
settings.append("device_map='auto'")
settings.append("load_in_8bit=True")
else:
settings.append("torch_dtype=torch.float16")
if args.auto_devices:
settings.append("device_map='auto'")
else:
cuda = ".cuda()"
settings = ', '.join(settings)
command = f"{command}(Path(f'models/{model_name}'), {settings}){cuda}"
model = eval(command)
# Loading the tokenizer # Loading the tokenizer
if model_name.lower().startswith('gpt4chan') and Path(f"models/gpt-j-6B/").exists(): if model_name.lower().startswith('gpt4chan') and Path(f"models/gpt-j-6B/").exists():
tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/")) tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))