mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2025-01-15 14:51:10 +01:00
commit
a329db062e
@ -55,9 +55,10 @@ For more information about the parameters, the [transformers documentation](http
|
||||
* **mirostat_tau**: No idea, see the paper for details. According to the Preset Arena, 8 is a good value.
|
||||
* **mirostat_eta**: No idea, see the paper for details. According to the Preset Arena, 0.1 is a good value.
|
||||
* **dynamic_temperature**: Activates Dynamic Temperature. This modifies temperature to range between "dynatemp_low" (minimum) and "dynatemp_high" (maximum), with an entropy-based scaling. The steepness of the curve is controlled by "dynatemp_exponent".
|
||||
* **temperature_last**: Makes temperature the last sampler instead of the first. With this, you can remove low probability tokens with a sampler like min_p and then use a high temperature to make the model creative without losing coherency.
|
||||
* **smoothing_factor**: Activates Quadratic Sampling. When `0 < smoothing_factor < 1`, the logits distribution becomes flatter. When `smoothing_factor > 1`, it becomes more peaked.
|
||||
* **temperature_last**: Makes temperature the last sampler instead of the first. With this, you can remove low probability tokens with a sampler like min_p and then use a high temperature to make the model creative without losing coherency. Note: this parameter takes precedence over "Sampler priority". That means that `temperature`/`dynamic_temperature`/`quadratic_sampling` will be removed from wherever they are and moved to the end of the stack.
|
||||
* **do_sample**: When unchecked, sampling is entirely disabled, and greedy decoding is used instead (the most likely token is always picked).
|
||||
* **Seed**: Set the Pytorch seed to this number. Note that some loaders do not use Pytorch (notably llama.cpp), and others are not deterministic (notably ExLlama v1 and v2). For these loaders, the seed has no effect.
|
||||
* **Seed**: Set the Pytorch seed to this number. Note that some loaders do not use Pytorch (notably llama.cpp), and others are not deterministic (ExLlamaV2). For these loaders, the seed has no effect.
|
||||
* **encoder_repetition_penalty**: Also known as the "Hallucinations filter". Used to penalize tokens that are *not* in the prior text. Higher value = more likely to stay in context, lower value = more likely to diverge.
|
||||
* **no_repeat_ngram_size**: If not set to 0, specifies the length of token sets that are completely blocked from repeating at all. Higher values = blocks larger phrases, lower values = blocks words or letters from repeating. Only 0 or high values are a good idea in most cases.
|
||||
* **min_length**: Minimum generation length in tokens. This is a built-in parameter in the transformers library that has never been very useful. Typically you want to check "Ban the eos_token" instead.
|
||||
@ -76,6 +77,7 @@ To the right (or below if you are on mobile), the following parameters are prese
|
||||
* **Add the bos_token to the beginning of prompts**: By default, the tokenizer will add a BOS (Beginning of Sequence) token to your prompt. During training, BOS tokens are used to separate different documents. If unchecked, no BOS token will be added, and the model will interpret your prompt as being in the middle of a document instead of at the start of one. This significantly changes the output and can make it more creative.
|
||||
* **Skip special tokens**: When decoding the generated tokens, skip special tokens from being converted to their text representation. Otherwise, BOS appears as `<s>`, EOS as `</s>`, etc.
|
||||
* **Activate text streaming**: When unchecked, the full response is outputted at once, without streaming the words one at a time. I recommend unchecking this parameter on high latency networks like running the webui on Google Colab or using `--share`.
|
||||
* **Sampler priority**: Allows you to customize the order in which the different samplers are applied. The first sampler on the list gets applied first. With this, custom orders like `top_p -> temperature -> top_k` can be defined.
|
||||
* **Load grammar from file**: Loads a GBNF grammar from a file under `text-generation-webui/grammars`. The output is written to the "Grammar" box below. You can also save and delete custom grammars using this menu.
|
||||
* **Grammar**: Allows you to constrain the model output to a particular format. For instance, you can make the model generate lists, JSON, specific words, etc. Grammar is extremely powerful and I highly recommend it. The syntax looks a bit daunting at first sight, but it gets very easy once you understand it. See the [GBNF Guide](https://github.com/ggerganov/llama.cpp/blob/master/grammars/README.md) for details.
|
||||
|
||||
|
@ -42,7 +42,7 @@ Examples:
|
||||
* https://huggingface.co/TheBloke/Llama-2-13B-chat-GPTQ
|
||||
|
||||
* **gpu-split**: If you have multiple GPUs, the amount of memory to allocate per GPU should be set in this field. Make sure to set a lower value for the first GPU, as that's where the cache is allocated.
|
||||
* **max_seq_len**: The maximum sequence length for the model. In ExLlama, the cache is preallocated, so the higher this value, the higher the VRAM. It is automatically set to the maximum sequence length for the model based on its metadata, but you may need to lower this value be able to fit the model into your GPU. After loading the model, the "Truncate the prompt up to this length" parameter under "Parameters" > "Generation" is automatically set to your chosen "max_seq_len" so that you don't have to set the same thing twice.
|
||||
* **max_seq_len**: The maximum sequence length for the model. In ExLlamaV2, the cache is preallocated, so the higher this value, the higher the VRAM. It is automatically set to the maximum sequence length for the model based on its metadata, but you may need to lower this value be able to fit the model into your GPU. After loading the model, the "Truncate the prompt up to this length" parameter under "Parameters" > "Generation" is automatically set to your chosen "max_seq_len" so that you don't have to set the same thing twice.
|
||||
* **cfg-cache**: Creates a second cache to hold the CFG negative prompts. You need to set this if and only if you intend to use CFG in the "Parameters" > "Generation" tab. Checking this parameter doubles the cache VRAM usage.
|
||||
* **no_flash_attn**: Disables flash attention. Otherwise, it is automatically used as long as the library is installed.
|
||||
* **cache_8bit**: Create a 8-bit precision cache instead of a 16-bit one. This saves VRAM but increases perplexity (I don't know by how much).
|
||||
@ -57,7 +57,7 @@ Loads: GPTQ models.
|
||||
|
||||
* **wbits**: For ancient models without proper metadata, sets the model precision in bits manually. Can usually be ignored.
|
||||
* **groupsize**: For ancient models without proper metadata, sets the model group size manually. Can usually be ignored.
|
||||
* **triton**: Only available on Linux. Necessary to use models with both act-order and groupsize simultaneously. Note that ExLlama can load these same models on Windows without triton.
|
||||
* **triton**: Only available on Linux. Necessary to use models with both act-order and groupsize simultaneously. Note that ExLlamaV2 can load these same models on Windows without triton.
|
||||
* **no_inject_fused_attention**: Improves performance while increasing the VRAM usage.
|
||||
* **no_inject_fused_mlp**: Similar to the previous parameter but for Triton only.
|
||||
* **no_use_cuda_fp16**: On some systems, the performance can be very bad with this unset. Can usually be ignored.
|
||||
@ -67,7 +67,7 @@ Loads: GPTQ models.
|
||||
|
||||
Loads: GPTQ models.
|
||||
|
||||
Ancient loader, the first one to implement 4-bit quantization. It works on older GPUs for which ExLlama and AutoGPTQ do not work, and it doesn't work with "act-order", so you should use it with simple 4-bit-128g models.
|
||||
Ancient loader, the first one to implement 4-bit quantization. It works on older GPUs for which ExLlamaV2 and AutoGPTQ do not work, and it doesn't work with "act-order", so you should use it with simple 4-bit-128g models.
|
||||
|
||||
* **pre_layer**: Used for CPU offloading. The higher the number, the more layers will be sent to the GPU. GPTQ-for-LLaMa CPU offloading was faster than the one implemented in AutoGPTQ the last time I checked.
|
||||
|
||||
|
@ -2,15 +2,17 @@
|
||||
|
||||
| Loader | Loading 1 LoRA | Loading 2 or more LoRAs | Training LoRAs | Multimodal extension | Perplexity evaluation |
|
||||
|----------------|----------------|-------------------------|----------------|----------------------|-----------------------|
|
||||
| Transformers | ✅ | ✅*** | ✅* | ✅ | ✅ |
|
||||
| ExLlamav2_HF | ✅ | ✅ | ❌ | ❌ | ✅ |
|
||||
| ExLlamav2 | ✅ | ✅ | ❌ | ❌ | use ExLlamav2_HF |
|
||||
| AutoGPTQ | ✅ | ❌ | ❌ | ✅ | ✅ |
|
||||
| GPTQ-for-LLaMa | ✅** | ✅*** | ✅ | ✅ | ✅ |
|
||||
| llama.cpp | ❌ | ❌ | ❌ | ❌ | use llamacpp_HF |
|
||||
| Transformers | ✅ | ✅\*\*\* | ✅\* | ✅ | ✅ |
|
||||
| llama.cpp | ❌ | ❌ | ❌ | ❌ | use llamacpp_HF |
|
||||
| llamacpp_HF | ❌ | ❌ | ❌ | ❌ | ✅ |
|
||||
| ExLlamav2_HF | ✅ | ✅ | ❌ | ❌ | ✅ |
|
||||
| ExLlamav2 | ✅ | ✅ | ❌ | ❌ | use ExLlamav2_HF |
|
||||
| AutoGPTQ | ✅ | ❌ | ❌ | ✅ | ✅ |
|
||||
| AutoAWQ | ? | ❌ | ? | ? | ✅ |
|
||||
| GPTQ-for-LLaMa | ✅\*\* | ✅\*\*\* | ✅ | ✅ | ✅ |
|
||||
| ctransformers | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| AutoAWQ | ? | ❌ | ? | ? | ✅ |
|
||||
| QuIP# | ? | ? | ? | ? | ✅ |
|
||||
| HQQ | ? | ? | ? | ? | ✅ |
|
||||
|
||||
❌ = not implemented
|
||||
|
||||
|
@ -12,6 +12,7 @@ class GenerationOptions(BaseModel):
|
||||
dynatemp_low: float = 1
|
||||
dynatemp_high: float = 1
|
||||
dynatemp_exponent: float = 1
|
||||
smoothing_factor: float = 0
|
||||
top_k: int = 0
|
||||
repetition_penalty: float = 1
|
||||
repetition_penalty_range: int = 1024
|
||||
@ -39,6 +40,7 @@ class GenerationOptions(BaseModel):
|
||||
max_tokens_second: int = 0
|
||||
prompt_lookup_num_tokens: int = 0
|
||||
custom_token_bans: str = ""
|
||||
sampler_priority: List[str] | str | None = Field(default=None, description="List of samplers where the first items will appear first in the stack. Example: [\"top_k\", \"temperature\", \"top_p\"].")
|
||||
auto_max_new_tokens: bool = False
|
||||
ban_eos_token: bool = False
|
||||
add_bos_token: bool = True
|
||||
|
@ -5,15 +5,12 @@ instruction_template: |-
|
||||
{%- set ns.found = true -%}
|
||||
{%- endif -%}
|
||||
{%- endfor -%}
|
||||
{%- if not ns.found -%}
|
||||
{{- '<|im_start|>system\n' + '' + '<|im_end|>\n' -}}
|
||||
{%- endif %}
|
||||
{%- for message in messages %}
|
||||
{%- if message['role'] == 'system' -%}
|
||||
{{- '<|im_start|>system\n' + message['content'] + '<|im_end|>\n' -}}
|
||||
{{- '<|im_start|>system\n' + message['content'].rstrip() + '<|im_end|>\n' -}}
|
||||
{%- else -%}
|
||||
{%- if message['role'] == 'user' -%}
|
||||
{{-'<|im_start|>user\n' + message['content'] + '<|im_end|>\n'-}}
|
||||
{{-'<|im_start|>user\n' + message['content'].rstrip() + '<|im_end|>\n'-}}
|
||||
{%- else -%}
|
||||
{{-'<|im_start|>assistant\n' + message['content'] + '<|im_end|>\n' -}}
|
||||
{%- endif -%}
|
||||
|
@ -12,7 +12,7 @@ from modules.models import reload_model
|
||||
def add_lora_to_model(lora_names):
|
||||
if 'GPTQForCausalLM' in shared.model.__class__.__name__ or shared.args.loader == 'AutoGPTQ':
|
||||
add_lora_autogptq(lora_names)
|
||||
elif shared.model.__class__.__name__ in ['Exllamav2Model', 'Exllamav2HF'] or shared.args.loader == ['ExLlamav2', 'ExLlamav2_HF']:
|
||||
elif shared.model.__class__.__name__ in ['Exllamav2Model', 'Exllamav2HF'] or shared.args.loader in ['ExLlamav2', 'ExLlamav2_HF']:
|
||||
add_lora_exllamav2(lora_names)
|
||||
else:
|
||||
add_lora_transformers(lora_names)
|
||||
|
@ -166,18 +166,53 @@ def generate_chat_prompt(user_input, state, **kwargs):
|
||||
prompt = remove_extra_bos(prompt)
|
||||
return prompt
|
||||
|
||||
prompt = make_prompt(messages)
|
||||
|
||||
# Handle truncation
|
||||
max_length = get_max_prompt_length(state)
|
||||
while len(messages) > 0 and get_encoded_length(prompt) > max_length:
|
||||
# Try to save the system message
|
||||
if len(messages) > 1 and messages[0]['role'] == 'system':
|
||||
prompt = make_prompt(messages)
|
||||
encoded_length = get_encoded_length(prompt)
|
||||
|
||||
while len(messages) > 0 and encoded_length > max_length:
|
||||
|
||||
# Remove old message, save system message
|
||||
if len(messages) > 2 and messages[0]['role'] == 'system':
|
||||
messages.pop(1)
|
||||
else:
|
||||
|
||||
# Remove old message when no system message is present
|
||||
elif len(messages) > 1 and messages[0]['role'] != 'system':
|
||||
messages.pop(0)
|
||||
|
||||
# Resort to truncating the user input
|
||||
else:
|
||||
|
||||
user_message = messages[-1]['content']
|
||||
|
||||
# Bisect the truncation point
|
||||
left, right = 0, len(user_message) - 1
|
||||
|
||||
while right - left > 1:
|
||||
mid = (left + right) // 2
|
||||
|
||||
messages[-1]['content'] = user_message[mid:]
|
||||
prompt = make_prompt(messages)
|
||||
encoded_length = get_encoded_length(prompt)
|
||||
|
||||
if encoded_length <= max_length:
|
||||
right = mid
|
||||
else:
|
||||
left = mid
|
||||
|
||||
messages[-1]['content'] = user_message[right:]
|
||||
prompt = make_prompt(messages)
|
||||
encoded_length = get_encoded_length(prompt)
|
||||
if encoded_length > max_length:
|
||||
logger.error(f"Failed to build the chat prompt. The input is too long for the available context length.\n\nTruncation length: {state['truncation_length']}\nmax_new_tokens: {state['max_new_tokens']} (is it too high?)\nAvailable context length: {max_length}\n")
|
||||
raise ValueError
|
||||
else:
|
||||
logger.warning(f"The input has been truncated. Context length: {state['truncation_length']}, max_new_tokens: {state['max_new_tokens']}, available context length: {max_length}.")
|
||||
break
|
||||
|
||||
prompt = make_prompt(messages)
|
||||
encoded_length = get_encoded_length(prompt)
|
||||
|
||||
if also_return_rows:
|
||||
return prompt, [message['content'] for message in messages]
|
||||
|
@ -216,7 +216,8 @@ class LlamacppHF(PreTrainedModel):
|
||||
'tensor_split': tensor_split_list,
|
||||
'rope_freq_scale': 1.0 / shared.args.compress_pos_emb,
|
||||
'logits_all': shared.args.logits_all,
|
||||
'offload_kqv': not shared.args.no_offload_kqv
|
||||
'offload_kqv': not shared.args.no_offload_kqv,
|
||||
'split_mode': 1 if not shared.args.row_split else 2
|
||||
}
|
||||
|
||||
Llama = llama_cpp_lib().Llama
|
||||
|
@ -95,7 +95,8 @@ class LlamaCppModel:
|
||||
'rope_freq_base': RoPE.get_rope_freq_base(shared.args.alpha_value, shared.args.rope_freq_base),
|
||||
'tensor_split': tensor_split_list,
|
||||
'rope_freq_scale': 1.0 / shared.args.compress_pos_emb,
|
||||
'offload_kqv': not shared.args.no_offload_kqv
|
||||
'offload_kqv': not shared.args.no_offload_kqv,
|
||||
'split_mode': 1 if not shared.args.row_split else 2
|
||||
}
|
||||
|
||||
result.model = Llama(**params)
|
||||
|
@ -26,7 +26,7 @@ loaders_and_params = OrderedDict({
|
||||
'compress_pos_emb',
|
||||
'disable_exllama',
|
||||
'disable_exllamav2',
|
||||
'transformers_info'
|
||||
'transformers_info',
|
||||
],
|
||||
'llama.cpp': [
|
||||
'n_ctx',
|
||||
@ -44,6 +44,7 @@ loaders_and_params = OrderedDict({
|
||||
'cpu',
|
||||
'numa',
|
||||
'no_offload_kqv',
|
||||
'row_split',
|
||||
'tensorcores',
|
||||
],
|
||||
'llamacpp_HF': [
|
||||
@ -66,6 +67,7 @@ loaders_and_params = OrderedDict({
|
||||
'no_use_fast',
|
||||
'logits_all',
|
||||
'no_offload_kqv',
|
||||
'row_split',
|
||||
'tensorcores',
|
||||
'llamacpp_HF_info',
|
||||
],
|
||||
@ -159,6 +161,7 @@ def transformers_samplers():
|
||||
'dynatemp_low',
|
||||
'dynatemp_high',
|
||||
'dynatemp_exponent',
|
||||
'smoothing_factor',
|
||||
'top_p',
|
||||
'min_p',
|
||||
'top_k',
|
||||
@ -189,6 +192,7 @@ def transformers_samplers():
|
||||
'negative_prompt',
|
||||
'ban_eos_token',
|
||||
'custom_token_bans',
|
||||
'sampler_priority',
|
||||
'add_bos_token',
|
||||
'skip_special_tokens',
|
||||
'auto_max_new_tokens',
|
||||
@ -233,6 +237,7 @@ loaders_samplers = {
|
||||
'dynatemp_low',
|
||||
'dynatemp_high',
|
||||
'dynatemp_exponent',
|
||||
'smoothing_factor',
|
||||
'top_p',
|
||||
'min_p',
|
||||
'top_k',
|
||||
@ -259,6 +264,7 @@ loaders_samplers = {
|
||||
'negative_prompt',
|
||||
'ban_eos_token',
|
||||
'custom_token_bans',
|
||||
'sampler_priority',
|
||||
'add_bos_token',
|
||||
'skip_special_tokens',
|
||||
'auto_max_new_tokens',
|
||||
@ -289,6 +295,7 @@ loaders_samplers = {
|
||||
'dynatemp_low',
|
||||
'dynatemp_high',
|
||||
'dynatemp_exponent',
|
||||
'smoothing_factor',
|
||||
'top_p',
|
||||
'min_p',
|
||||
'top_k',
|
||||
@ -315,6 +322,7 @@ loaders_samplers = {
|
||||
'negative_prompt',
|
||||
'ban_eos_token',
|
||||
'custom_token_bans',
|
||||
'sampler_priority',
|
||||
'add_bos_token',
|
||||
'skip_special_tokens',
|
||||
'auto_max_new_tokens',
|
||||
|
@ -100,9 +100,9 @@ def load_model(model_name, loader=None):
|
||||
elif loader in ['llama.cpp', 'llamacpp_HF', 'ctransformers']:
|
||||
shared.settings['truncation_length'] = shared.args.n_ctx
|
||||
|
||||
logger.info(f"LOADER: {loader}")
|
||||
logger.info(f"LOADER: \"{loader}\"")
|
||||
logger.info(f"TRUNCATION LENGTH: {shared.settings['truncation_length']}")
|
||||
logger.info(f"INSTRUCTION TEMPLATE: {metadata['instruction_template']}")
|
||||
logger.info(f"INSTRUCTION TEMPLATE: \"{metadata['instruction_template']}\"")
|
||||
logger.info(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
|
||||
return model, tokenizer
|
||||
|
||||
|
@ -17,6 +17,7 @@ def default_preset():
|
||||
'dynatemp_low': 1,
|
||||
'dynatemp_high': 1,
|
||||
'dynatemp_exponent': 1,
|
||||
'smoothing_factor': 0,
|
||||
'top_p': 1,
|
||||
'min_p': 0,
|
||||
'top_k': 0,
|
||||
@ -41,6 +42,7 @@ def default_preset():
|
||||
'num_beams': 1,
|
||||
'length_penalty': 1,
|
||||
'early_stopping': False,
|
||||
'sampler_priority': 'temperature\ndynamic_temperature\nquadratic_sampling\ntop_k\ntop_p\ntypical_p\nepsilon_cutoff\neta_cutoff\ntfs\ntop_a\nmin_p\nmirostat'
|
||||
}
|
||||
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
import math
|
||||
import pprint
|
||||
|
||||
import torch
|
||||
import transformers
|
||||
@ -6,17 +7,21 @@ from transformers import LogitsWarper, is_torch_xpu_available
|
||||
from transformers.generation.logits_process import (
|
||||
LogitNormalization,
|
||||
LogitsProcessor,
|
||||
LogitsProcessorList,
|
||||
TemperatureLogitsWarper
|
||||
LogitsProcessorList
|
||||
)
|
||||
|
||||
from modules import shared
|
||||
from modules.logging_colors import logger
|
||||
|
||||
global_scores = None
|
||||
|
||||
|
||||
class TemperatureLogitsWarperWithDynatemp(LogitsWarper):
|
||||
def __init__(self, temperature: float, dynamic_temperature: bool, dynatemp_low: float, dynatemp_high: float, dynatemp_exponent: float):
|
||||
class TemperatureLogitsWarperCustom(LogitsWarper):
|
||||
'''
|
||||
A copy of the original Transformers temperature logits warper.
|
||||
'''
|
||||
|
||||
def __init__(self, temperature: float):
|
||||
if not isinstance(temperature, float) or not (temperature > 0):
|
||||
except_msg = (
|
||||
f"`temperature` (={temperature}) has to be a strictly positive float, otherwise your next token "
|
||||
@ -28,65 +33,90 @@ class TemperatureLogitsWarperWithDynatemp(LogitsWarper):
|
||||
raise ValueError(except_msg)
|
||||
|
||||
self.temperature = temperature
|
||||
self.dynamic_temperature = dynamic_temperature
|
||||
|
||||
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
||||
scores = scores / self.temperature
|
||||
return scores
|
||||
|
||||
|
||||
class DynamicTemperatureLogitsWarper(LogitsWarper):
|
||||
'''
|
||||
Dynamic temperature.
|
||||
'''
|
||||
|
||||
def __init__(self, dynatemp_low: float, dynatemp_high: float, dynatemp_exponent: float):
|
||||
self.dynatemp_low = dynatemp_low
|
||||
self.dynatemp_high = dynatemp_high
|
||||
self.dynatemp_exponent = dynatemp_exponent
|
||||
|
||||
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
||||
min_temp = self.dynatemp_low
|
||||
max_temp = self.dynatemp_high
|
||||
exponent_val = self.dynatemp_exponent
|
||||
|
||||
# Regular temperature
|
||||
if not self.dynamic_temperature:
|
||||
scores = scores / self.temperature
|
||||
return scores
|
||||
# Convert logits to probabilities
|
||||
probs = torch.softmax(scores, dim=-1)
|
||||
|
||||
# Dynamic temperature
|
||||
else:
|
||||
min_temp = self.dynatemp_low
|
||||
max_temp = self.dynatemp_high
|
||||
exponent_val = self.dynatemp_exponent
|
||||
# Calculate entropy of the softmax probabilities
|
||||
entropy = -1.0 * torch.where(probs > 0, probs * torch.log(probs), torch.zeros_like(probs)).sum()
|
||||
|
||||
# Convert logits to probabilities
|
||||
probs = torch.softmax(scores, dim=-1)
|
||||
# Guard against future possible division by zero
|
||||
entropy = max(entropy, torch.tensor(1e-10)) # Ensures entropy is slightly greater than 0
|
||||
|
||||
# Calculate entropy of the softmax probabilities
|
||||
entropy = -1.0 * torch.where(probs > 0, probs * torch.log(probs), torch.zeros_like(probs)).sum()
|
||||
# Any logits which are not -Infinity will be considered for calculating max entropy.
|
||||
num_valid_tokens = torch.sum(scores > -float('inf')).item()
|
||||
|
||||
# Guard against future possible division by zero
|
||||
entropy = max(entropy, torch.tensor(1e-10)) # Ensures entropy is slightly greater than 0
|
||||
# Now, calculate the max entropy by using only the valid tokens' count
|
||||
max_entropy = math.log(num_valid_tokens)
|
||||
|
||||
# Any logits which are not -Infinity will be considered for calculating max entropy.
|
||||
num_valid_tokens = torch.sum(scores > -float('inf')).item()
|
||||
# Guard against future possible division by zero
|
||||
max_entropy = max_entropy if max_entropy > 0.0 else 1e-10
|
||||
|
||||
# Now, calculate the max entropy by using only the valid tokens' count
|
||||
max_entropy = math.log(num_valid_tokens)
|
||||
# Normalize the entropy
|
||||
normalized_entropy = entropy / max_entropy
|
||||
|
||||
# Guard against future possible division by zero
|
||||
max_entropy = max_entropy if max_entropy > 0.0 else 1e-10
|
||||
# Map the normalized entropy to the desired temperature range using the power function
|
||||
dyn_temp = min_temp + (max_temp - min_temp) * (normalized_entropy.pow(exponent_val))
|
||||
|
||||
# Normalize the entropy
|
||||
normalized_entropy = entropy / max_entropy
|
||||
# Apply the dynamically calculated temperature scaling
|
||||
scores = scores / dyn_temp
|
||||
|
||||
# Map the normalized entropy to the desired temperature range using the power function
|
||||
dyn_temp = min_temp + (max_temp - min_temp) * (normalized_entropy.pow(exponent_val))
|
||||
# print("----------------------\nTemperature from generation_config:", self.temperature)
|
||||
# print("min_temp:", min_temp)
|
||||
# print("max_temp:", max_temp)
|
||||
# print("Entropy:", entropy.item())
|
||||
# print("Max Possible Entropy considering valid tokens only:", max_entropy)
|
||||
# print("Normalized Entropy:", normalized_entropy.item())
|
||||
# print("Dynamic Temperature (dyn_temp):", dyn_temp.item())
|
||||
# print("----------------------")
|
||||
|
||||
# Apply the dynamically calculated temperature scaling
|
||||
scores = scores / dyn_temp
|
||||
# max_prob_token_id = torch.argmax(scores, dim=-1) # Get the token ID with the highest probability
|
||||
# max_prob_token = shared.tokenizer.convert_ids_to_tokens(int(max_prob_token_id)) # Convert ID to token
|
||||
# print("--- T=", float(dyn_temp), "token=", max_prob_token, "min=", min_temp, "max=", max_temp, "exponent=", exponent_val)
|
||||
|
||||
# print("----------------------\nTemperature from generation_config:", self.temperature)
|
||||
# print("min_temp:", min_temp)
|
||||
# print("max_temp:", max_temp)
|
||||
# print("Entropy:", entropy.item())
|
||||
# print("Max Possible Entropy considering valid tokens only:", max_entropy)
|
||||
# print("Normalized Entropy:", normalized_entropy.item())
|
||||
# print("Dynamic Temperature (dyn_temp):", dyn_temp.item())
|
||||
# print("----------------------")
|
||||
return scores
|
||||
|
||||
# max_prob_token_id = torch.argmax(scores, dim=-1) # Get the token ID with the highest probability
|
||||
# max_prob_token = shared.tokenizer.convert_ids_to_tokens(int(max_prob_token_id)) # Convert ID to token
|
||||
# print("--- T=", float(dyn_temp), "token=", max_prob_token, "min=", min_temp, "max=", max_temp, "exponent=", exponent_val)
|
||||
|
||||
return scores
|
||||
class QuadraticSamplingLogitsWarper(LogitsWarper):
|
||||
'''
|
||||
Quadratic sampling.
|
||||
'''
|
||||
|
||||
def __init__(self, smoothing_factor: float):
|
||||
self.smoothing_factor = smoothing_factor
|
||||
|
||||
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
||||
# Compute the maximum logit value
|
||||
max_logit = scores.max()
|
||||
|
||||
# Apply the quadratic transformation
|
||||
transformed_logits = -(self.smoothing_factor * (scores - max_logit)**2) + max_logit
|
||||
|
||||
# No need to print the top 5 logits since this is not required
|
||||
# print("Original top 5 logits: ", torch.topk(scores, 5))
|
||||
# print("New top 5 logits: ", torch.topk(transformed_logits, 5))
|
||||
|
||||
return transformed_logits
|
||||
|
||||
|
||||
class MinPLogitsWarper(LogitsWarper):
|
||||
@ -189,6 +219,7 @@ class MirostatLogitsWarper(LogitsWarper):
|
||||
def __init__(self, mirostat_mode: int, mirostat_tau: float, mirostat_eta: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
|
||||
if mirostat_mode not in [2]:
|
||||
raise ValueError(f"`mirostat` has to be a an integer 2, but is {mirostat_mode}")
|
||||
|
||||
self.mirostat_mode = mirostat_mode
|
||||
self.mirostat_eta = mirostat_eta
|
||||
self.mirostat_tau = mirostat_tau
|
||||
@ -281,43 +312,74 @@ class RepetitionPenaltyLogitsProcessorWithRange(LogitsProcessor):
|
||||
|
||||
|
||||
def get_logits_warper_patch(self, generation_config):
|
||||
# Make sure that temperature is float and not int
|
||||
|
||||
# Parameter sanitization
|
||||
if isinstance(generation_config.temperature, int):
|
||||
generation_config.temperature = float(generation_config.temperature)
|
||||
|
||||
temperature = generation_config.temperature
|
||||
if generation_config.dynamic_temperature:
|
||||
# Make sure TemperatureLogitsWarper will be created by temporarily
|
||||
# setting temperature to a value != 1.
|
||||
generation_config.temperature = 1.1
|
||||
generation_config.temperature = float(generation_config.temperature) # Must be float
|
||||
|
||||
# Get the original warpers
|
||||
warpers = self._get_logits_warper_old(generation_config)
|
||||
|
||||
# Replace temperature with our modified class.
|
||||
# Currently, it behaves identically to the original.
|
||||
for i in range(len(warpers)):
|
||||
if warpers[i].__class__.__name__ == 'TemperatureLogitsWarper':
|
||||
warpers[i] = TemperatureLogitsWarperWithDynatemp(
|
||||
temperature,
|
||||
generation_config.dynamic_temperature,
|
||||
generation_config.dynatemp_low,
|
||||
generation_config.dynatemp_high,
|
||||
generation_config.dynatemp_exponent
|
||||
warpers[i] = TemperatureLogitsWarperCustom(
|
||||
generation_config.temperature,
|
||||
)
|
||||
|
||||
# Add custom warpers
|
||||
warpers_to_add = LogitsProcessorList()
|
||||
min_tokens_to_keep = 2 if generation_config.num_beams > 1 else 1
|
||||
if generation_config.tfs is not None and 0.0 <= generation_config.tfs < 1.0:
|
||||
warpers_to_add.append(
|
||||
TailFreeLogitsWarper(
|
||||
tfs=generation_config.tfs,
|
||||
min_tokens_to_keep=min_tokens_to_keep
|
||||
)
|
||||
)
|
||||
|
||||
if generation_config.top_a is not None and 0.0 < generation_config.top_a <= 1.0:
|
||||
warpers_to_add.append(
|
||||
TopALogitsWarper(
|
||||
top_a=generation_config.top_a,
|
||||
min_tokens_to_keep=min_tokens_to_keep
|
||||
)
|
||||
)
|
||||
|
||||
if generation_config.min_p is not None and 0.0 < generation_config.min_p <= 1.0:
|
||||
warpers_to_add.append(
|
||||
MinPLogitsWarper(
|
||||
min_p=generation_config.min_p,
|
||||
min_tokens_to_keep=min_tokens_to_keep
|
||||
)
|
||||
)
|
||||
|
||||
if generation_config.dynamic_temperature:
|
||||
warpers_to_add.append(
|
||||
DynamicTemperatureLogitsWarper(
|
||||
dynatemp_low=generation_config.dynatemp_low,
|
||||
dynatemp_high=generation_config.dynatemp_high,
|
||||
dynatemp_exponent=generation_config.dynatemp_exponent,
|
||||
)
|
||||
)
|
||||
|
||||
if generation_config.smoothing_factor > 0:
|
||||
warpers_to_add.append(
|
||||
QuadraticSamplingLogitsWarper(
|
||||
smoothing_factor=generation_config.smoothing_factor
|
||||
)
|
||||
)
|
||||
|
||||
if generation_config.mirostat_mode is not None and generation_config.mirostat_mode == 2:
|
||||
warpers_to_add.append(MirostatLogitsWarper(mirostat_mode=generation_config.mirostat_mode, mirostat_eta=generation_config.mirostat_eta, mirostat_tau=generation_config.mirostat_tau, min_tokens_to_keep=min_tokens_to_keep))
|
||||
# We need to disable samplers other than temperature
|
||||
for warper in warpers:
|
||||
if not isinstance(warper, TemperatureLogitsWarper):
|
||||
warpers.remove(warper)
|
||||
else:
|
||||
if generation_config.tfs is not None and 0.0 <= generation_config.tfs < 1.0:
|
||||
warpers_to_add.append(TailFreeLogitsWarper(tfs=generation_config.tfs, min_tokens_to_keep=min_tokens_to_keep))
|
||||
if generation_config.top_a is not None and 0.0 < generation_config.top_a <= 1.0:
|
||||
warpers_to_add.append(TopALogitsWarper(top_a=generation_config.top_a, min_tokens_to_keep=min_tokens_to_keep))
|
||||
if generation_config.min_p is not None and 0.0 < generation_config.min_p <= 1.0:
|
||||
warpers_to_add.append(MinPLogitsWarper(min_p=generation_config.min_p, min_tokens_to_keep=min_tokens_to_keep))
|
||||
warpers_to_add.append(
|
||||
MirostatLogitsWarper(
|
||||
mirostat_mode=generation_config.mirostat_mode,
|
||||
mirostat_eta=generation_config.mirostat_eta,
|
||||
mirostat_tau=generation_config.mirostat_tau,
|
||||
min_tokens_to_keep=min_tokens_to_keep
|
||||
)
|
||||
)
|
||||
|
||||
if len(warpers) > 0 and isinstance(warpers[-1], LogitNormalization):
|
||||
normalize = warpers.pop(-1)
|
||||
@ -325,23 +387,57 @@ def get_logits_warper_patch(self, generation_config):
|
||||
normalize = None
|
||||
|
||||
warpers += warpers_to_add
|
||||
if generation_config.temperature_last:
|
||||
temperature_idx = None
|
||||
for i in range(len(warpers)):
|
||||
if warpers[i].__class__.__name__ in ['TemperatureLogitsWarper', 'TemperatureLogitsWarperWithDynatemp']:
|
||||
temperature_idx = i
|
||||
break
|
||||
|
||||
if temperature_idx is not None:
|
||||
warpers.append(warpers.pop(temperature_idx))
|
||||
# Sort the samplers.
|
||||
sampler_priority = generation_config.sampler_priority
|
||||
|
||||
# Handle temperature_last
|
||||
if generation_config.temperature_last:
|
||||
for param_name in ['temperature', 'dynamic_temperature', 'quadratic_sampling']:
|
||||
if param_name in sampler_priority:
|
||||
if param_name in sampler_priority:
|
||||
index = sampler_priority.index(param_name)
|
||||
sampler_priority.append(sampler_priority.pop(index))
|
||||
else:
|
||||
sampler_priority.append(param_name)
|
||||
|
||||
class_name_to_nickname = {
|
||||
'DynamicTemperatureLogitsWarper': 'dynamic_temperature',
|
||||
'EpsilonLogitsWarper': 'epsilon_cutoff',
|
||||
'EtaLogitsWarper': 'eta_cutoff',
|
||||
'MinPLogitsWarper': 'min_p',
|
||||
'MirostatLogitsWarper': 'mirostat',
|
||||
'QuadraticSamplingLogitsWarper': 'quadratic_sampling',
|
||||
'TailFreeLogitsWarper': 'tfs',
|
||||
'TemperatureLogitsWarperCustom': 'temperature',
|
||||
'TopALogitsWarper': 'top_a',
|
||||
'TopKLogitsWarper': 'top_k',
|
||||
'TopPLogitsWarper': 'top_p',
|
||||
'TypicalLogitsWarper': 'typical_p'
|
||||
}
|
||||
|
||||
def custom_sort_key(obj):
|
||||
class_name = obj.__class__.__name__
|
||||
|
||||
# Return a large value if class name is not mapped or if the mapped nickname is not in priority
|
||||
if class_name not in class_name_to_nickname or class_name_to_nickname[class_name] not in sampler_priority:
|
||||
return float('inf')
|
||||
|
||||
# Return the index of the nickname in the priority list for sorting
|
||||
return sampler_priority.index(class_name_to_nickname[class_name])
|
||||
|
||||
# Sort the list using the custom key function
|
||||
warpers = sorted(warpers, key=custom_sort_key)
|
||||
|
||||
if normalize is not None:
|
||||
warpers.append(normalize)
|
||||
|
||||
warpers.append(SpyLogitsWarper())
|
||||
warpers = LogitsProcessorList(warpers)
|
||||
# for i in range(len(warpers)):
|
||||
# print(warpers[i].__class__.__name__)
|
||||
if shared.args.verbose:
|
||||
logger.info("WARPERS=")
|
||||
pprint.PrettyPrinter(indent=4, sort_dicts=False).pprint([x.__class__.__name__ for x in warpers])
|
||||
|
||||
return warpers
|
||||
|
||||
|
||||
@ -352,8 +448,7 @@ def get_logits_processor_patch(self, **kwargs):
|
||||
repetition_penalty_range = kwargs['generation_config'].repetition_penalty_range
|
||||
do_rep_pen_hijack = (repetition_penalty > 1) or (presence_penalty != 0) or (frequency_penalty != 0)
|
||||
if do_rep_pen_hijack:
|
||||
# Make sure that a RepetitionPenaltyLogitsProcessor will be created
|
||||
kwargs['generation_config'].repetition_penalty = 1.1 # must set to some value > 1
|
||||
kwargs['generation_config'].repetition_penalty = 1.1 # Set to value > 1 to ensure RepetitionPenaltyLogitsProcessor is created
|
||||
|
||||
result = self._get_logits_processor_old(**kwargs)
|
||||
|
||||
@ -372,6 +467,7 @@ def generation_config_init_patch(self, **kwargs):
|
||||
self.dynatemp_low = kwargs.pop("dynatemp_low", 1)
|
||||
self.dynatemp_high = kwargs.pop("dynatemp_high", 1)
|
||||
self.dynatemp_exponent = kwargs.pop("dynatemp_exponent", 1)
|
||||
self.smoothing_factor = kwargs.pop("smoothing_factor", 0.0)
|
||||
self.tfs = kwargs.pop("tfs", 1.0)
|
||||
self.top_a = kwargs.pop("top_a", 0.0)
|
||||
self.mirostat_mode = kwargs.pop("mirostat_mode", 0)
|
||||
@ -381,6 +477,7 @@ def generation_config_init_patch(self, **kwargs):
|
||||
self.presence_penalty = kwargs.pop("presence_penalty", 0)
|
||||
self.frequency_penalty = kwargs.pop("frequency_penalty", 0)
|
||||
self.temperature_last = kwargs.pop("temperature_last", False)
|
||||
self.sampler_priority = kwargs.pop("sampler_priority", ['temperature', 'dynamic_temperature', 'quadratic_sampling', 'top_k', 'top_p', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'tfs', 'top_a', 'min_p', 'mirostat'])
|
||||
|
||||
|
||||
def hijack_samplers():
|
||||
|
@ -129,9 +129,10 @@ group.add_argument('--numa', action='store_true', help='Activate NUMA task alloc
|
||||
group.add_argument('--logits_all', action='store_true', help='Needs to be set for perplexity evaluation to work. Otherwise, ignore it, as it makes prompt processing slower.')
|
||||
group.add_argument('--no_offload_kqv', action='store_true', help='Do not offload the K, Q, V to the GPU. This saves VRAM but reduces the performance.')
|
||||
group.add_argument('--cache-capacity', type=str, help='Maximum cache capacity (llama-cpp-python). Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed.')
|
||||
group.add_argument('--row_split', action='store_true', help='Split the model by rows across GPUs. This may improve multi-gpu performance.')
|
||||
|
||||
# ExLlama
|
||||
group = parser.add_argument_group('ExLlama')
|
||||
# ExLlamaV2
|
||||
group = parser.add_argument_group('ExLlamaV2')
|
||||
group.add_argument('--gpu-split', type=str, help='Comma-separated list of VRAM (in GB) to use per GPU device for model layers. Example: 20,7,7.')
|
||||
group.add_argument('--max_seq_len', type=int, default=2048, help='Maximum sequence length.')
|
||||
group.add_argument('--cfg-cache', action='store_true', help='ExLlamav2_HF: Create an additional cache for CFG negative prompts. Necessary to use CFG with that loader.')
|
||||
|
@ -50,6 +50,11 @@ def _generate_reply(question, state, stopping_strings=None, is_chat=False, escap
|
||||
else:
|
||||
generate_func = generate_reply_HF
|
||||
|
||||
if generate_func != generate_reply_HF and shared.args.verbose:
|
||||
logger.info("PROMPT=")
|
||||
print(question)
|
||||
print()
|
||||
|
||||
# Prepare the input
|
||||
original_question = question
|
||||
if not is_chat:
|
||||
@ -65,10 +70,6 @@ def _generate_reply(question, state, stopping_strings=None, is_chat=False, escap
|
||||
if type(st) is list and len(st) > 0:
|
||||
all_stop_strings += st
|
||||
|
||||
if shared.args.verbose:
|
||||
logger.info("PROMPT=")
|
||||
print(question)
|
||||
|
||||
shared.stop_everything = False
|
||||
clear_torch_cache()
|
||||
seed = set_manual_seed(state['seed'])
|
||||
@ -285,8 +286,14 @@ def get_reply_from_output_ids(output_ids, state=None, starting_from=0):
|
||||
|
||||
def generate_reply_HF(question, original_question, seed, state, stopping_strings=None, is_chat=False):
|
||||
generate_params = {}
|
||||
for k in ['max_new_tokens', 'temperature', 'temperature_last', 'dynamic_temperature', 'dynatemp_low', 'dynatemp_high', 'dynatemp_exponent', 'top_p', 'min_p', 'top_k', 'repetition_penalty', 'presence_penalty', 'frequency_penalty', 'repetition_penalty_range', 'typical_p', 'tfs', 'top_a', 'guidance_scale', 'penalty_alpha', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'do_sample', 'encoder_repetition_penalty', 'no_repeat_ngram_size', 'min_length', 'num_beams', 'length_penalty', 'early_stopping']:
|
||||
generate_params[k] = state[k]
|
||||
for k in ['max_new_tokens', 'temperature', 'temperature_last', 'dynamic_temperature', 'dynatemp_low', 'dynatemp_high', 'dynatemp_exponent', 'smoothing_factor', 'top_p', 'min_p', 'top_k', 'repetition_penalty', 'presence_penalty', 'frequency_penalty', 'repetition_penalty_range', 'typical_p', 'tfs', 'top_a', 'guidance_scale', 'penalty_alpha', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'do_sample', 'encoder_repetition_penalty', 'no_repeat_ngram_size', 'min_length', 'num_beams', 'length_penalty', 'early_stopping']:
|
||||
if k in state:
|
||||
generate_params[k] = state[k]
|
||||
|
||||
if isinstance(state['sampler_priority'], list):
|
||||
generate_params['sampler_priority'] = state['sampler_priority']
|
||||
elif isinstance(state['sampler_priority'], str):
|
||||
generate_params['sampler_priority'] = [x.strip() for x in state['sampler_priority'].replace('\n', ',').split(',') if x.strip()]
|
||||
|
||||
if state['negative_prompt'] != '':
|
||||
generate_params['negative_prompt_ids'] = encode(state['negative_prompt'])
|
||||
@ -353,6 +360,10 @@ def generate_reply_HF(question, original_question, seed, state, stopping_strings
|
||||
pprint.PrettyPrinter(indent=4, sort_dicts=False).pprint(filtered_params)
|
||||
print()
|
||||
|
||||
logger.info("PROMPT=")
|
||||
print(decode(input_ids[0], skip_special_tokens=False))
|
||||
print()
|
||||
|
||||
t0 = time.time()
|
||||
try:
|
||||
if not is_chat and not shared.is_seq2seq:
|
||||
|
@ -93,6 +93,7 @@ def list_model_elements():
|
||||
'numa',
|
||||
'logits_all',
|
||||
'no_offload_kqv',
|
||||
'row_split',
|
||||
'tensorcores',
|
||||
'hqq_backend',
|
||||
]
|
||||
@ -120,6 +121,7 @@ def list_interface_input_elements():
|
||||
'dynatemp_low',
|
||||
'dynatemp_high',
|
||||
'dynatemp_exponent',
|
||||
'smoothing_factor',
|
||||
'top_p',
|
||||
'min_p',
|
||||
'top_k',
|
||||
@ -147,6 +149,7 @@ def list_interface_input_elements():
|
||||
'add_bos_token',
|
||||
'ban_eos_token',
|
||||
'custom_token_bans',
|
||||
'sampler_priority',
|
||||
'truncation_length',
|
||||
'custom_stopping_strings',
|
||||
'skip_special_tokens',
|
||||
|
@ -77,63 +77,70 @@ def create_ui():
|
||||
with gr.Box():
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
for i in range(len(total_mem)):
|
||||
shared.gradio[f'gpu_memory_{i}'] = gr.Slider(label=f"gpu-memory in MiB for device :{i}", maximum=total_mem[i], value=default_gpu_mem[i])
|
||||
with gr.Blocks():
|
||||
for i in range(len(total_mem)):
|
||||
shared.gradio[f'gpu_memory_{i}'] = gr.Slider(label=f"gpu-memory in MiB for device :{i}", maximum=total_mem[i], value=default_gpu_mem[i])
|
||||
|
||||
shared.gradio['cpu_memory'] = gr.Slider(label="cpu-memory in MiB", maximum=total_cpu_mem, value=default_cpu_mem)
|
||||
|
||||
with gr.Blocks():
|
||||
shared.gradio['transformers_info'] = gr.Markdown('load-in-4bit params:')
|
||||
shared.gradio['compute_dtype'] = gr.Dropdown(label="compute_dtype", choices=["bfloat16", "float16", "float32"], value=shared.args.compute_dtype)
|
||||
shared.gradio['quant_type'] = gr.Dropdown(label="quant_type", choices=["nf4", "fp4"], value=shared.args.quant_type)
|
||||
|
||||
shared.gradio['cpu_memory'] = gr.Slider(label="cpu-memory in MiB", maximum=total_cpu_mem, value=default_cpu_mem)
|
||||
shared.gradio['transformers_info'] = gr.Markdown('load-in-4bit params:')
|
||||
shared.gradio['compute_dtype'] = gr.Dropdown(label="compute_dtype", choices=["bfloat16", "float16", "float32"], value=shared.args.compute_dtype)
|
||||
shared.gradio['quant_type'] = gr.Dropdown(label="quant_type", choices=["nf4", "fp4"], value=shared.args.quant_type)
|
||||
shared.gradio['hqq_backend'] = gr.Dropdown(label="hqq_backend", choices=["PYTORCH", "PYTORCH_COMPILE", "ATEN"], value=shared.args.hqq_backend)
|
||||
|
||||
shared.gradio['n_gpu_layers'] = gr.Slider(label="n-gpu-layers", minimum=0, maximum=256, value=shared.args.n_gpu_layers)
|
||||
shared.gradio['n_ctx'] = gr.Slider(minimum=0, maximum=shared.settings['truncation_length_max'], step=256, label="n_ctx", value=shared.args.n_ctx, info='Context length. Try lowering this if you run out of memory while loading the model.')
|
||||
shared.gradio['tensor_split'] = gr.Textbox(label='tensor_split', info='List of proportions to split the model across multiple GPUs. Example: 18,17')
|
||||
shared.gradio['n_batch'] = gr.Slider(label="n_batch", minimum=1, maximum=2048, step=1, value=shared.args.n_batch)
|
||||
shared.gradio['threads'] = gr.Slider(label="threads", minimum=0, step=1, maximum=32, value=shared.args.threads)
|
||||
shared.gradio['threads_batch'] = gr.Slider(label="threads_batch", minimum=0, step=1, maximum=32, value=shared.args.threads_batch)
|
||||
shared.gradio['n_batch'] = gr.Slider(label="n_batch", minimum=1, maximum=2048, value=shared.args.n_batch)
|
||||
|
||||
shared.gradio['wbits'] = gr.Dropdown(label="wbits", choices=["None", 1, 2, 3, 4, 8], value=shared.args.wbits if shared.args.wbits > 0 else "None")
|
||||
shared.gradio['groupsize'] = gr.Dropdown(label="groupsize", choices=["None", 32, 64, 128, 1024], value=shared.args.groupsize if shared.args.groupsize > 0 else "None")
|
||||
shared.gradio['model_type'] = gr.Dropdown(label="model_type", choices=["None"], value=shared.args.model_type or "None")
|
||||
shared.gradio['pre_layer'] = gr.Slider(label="pre_layer", minimum=0, maximum=100, value=shared.args.pre_layer[0] if shared.args.pre_layer is not None else 0)
|
||||
shared.gradio['autogptq_info'] = gr.Markdown('ExLlamav2_HF is recommended over AutoGPTQ for models derived from Llama.')
|
||||
shared.gradio['gpu_split'] = gr.Textbox(label='gpu-split', info='Comma-separated list of VRAM (in GB) to use per GPU. Example: 20,7,7')
|
||||
shared.gradio['max_seq_len'] = gr.Slider(label='max_seq_len', minimum=0, maximum=shared.settings['truncation_length_max'], step=256, info='Context length. Try lowering this if you run out of memory while loading the model.', value=shared.args.max_seq_len)
|
||||
shared.gradio['alpha_value'] = gr.Slider(label='alpha_value', minimum=1, maximum=8, step=0.05, info='Positional embeddings alpha factor for NTK RoPE scaling. Recommended values (NTKv1): 1.75 for 1.5x context, 2.5 for 2x context. Use either this or compress_pos_emb, not both.', value=shared.args.alpha_value)
|
||||
shared.gradio['rope_freq_base'] = gr.Slider(label='rope_freq_base', minimum=0, maximum=1000000, step=1000, info='If greater than 0, will be used instead of alpha_value. Those two are related by rope_freq_base = 10000 * alpha_value ^ (64 / 63)', value=shared.args.rope_freq_base)
|
||||
shared.gradio['compress_pos_emb'] = gr.Slider(label='compress_pos_emb', minimum=1, maximum=8, step=1, info='Positional embeddings compression factor. Should be set to (context length) / (model\'s original context length). Equal to 1/rope_freq_scale.', value=shared.args.compress_pos_emb)
|
||||
with gr.Blocks():
|
||||
shared.gradio['alpha_value'] = gr.Slider(label='alpha_value', minimum=1, maximum=8, step=0.05, info='Positional embeddings alpha factor for NTK RoPE scaling. Recommended values (NTKv1): 1.75 for 1.5x context, 2.5 for 2x context. Use either this or compress_pos_emb, not both.', value=shared.args.alpha_value)
|
||||
shared.gradio['rope_freq_base'] = gr.Slider(label='rope_freq_base', minimum=0, maximum=1000000, step=1000, info='If greater than 0, will be used instead of alpha_value. Those two are related by rope_freq_base = 10000 * alpha_value ^ (64 / 63)', value=shared.args.rope_freq_base)
|
||||
shared.gradio['compress_pos_emb'] = gr.Slider(label='compress_pos_emb', minimum=1, maximum=8, step=1, info='Positional embeddings compression factor. Should be set to (context length) / (model\'s original context length). Equal to 1/rope_freq_scale.', value=shared.args.compress_pos_emb)
|
||||
|
||||
shared.gradio['autogptq_info'] = gr.Markdown('ExLlamav2_HF is recommended over AutoGPTQ for models derived from Llama.')
|
||||
shared.gradio['quipsharp_info'] = gr.Markdown('QuIP# has to be installed manually at the moment.')
|
||||
|
||||
with gr.Column():
|
||||
shared.gradio['tensorcores'] = gr.Checkbox(label="tensorcores", value=shared.args.tensorcores, info='Use llama-cpp-python compiled with tensor cores support. This increases performance on RTX cards. NVIDIA only.')
|
||||
shared.gradio['load_in_8bit'] = gr.Checkbox(label="load-in-8bit", value=shared.args.load_in_8bit)
|
||||
shared.gradio['load_in_4bit'] = gr.Checkbox(label="load-in-4bit", value=shared.args.load_in_4bit)
|
||||
shared.gradio['use_double_quant'] = gr.Checkbox(label="use_double_quant", value=shared.args.use_double_quant)
|
||||
shared.gradio['use_flash_attention_2'] = gr.Checkbox(label="use_flash_attention_2", value=shared.args.use_flash_attention_2, info='Set use_flash_attention_2=True while loading the model.')
|
||||
shared.gradio['auto_devices'] = gr.Checkbox(label="auto-devices", value=shared.args.auto_devices)
|
||||
shared.gradio['tensorcores'] = gr.Checkbox(label="tensorcores", value=shared.args.tensorcores, info='NVIDIA only: use llama-cpp-python compiled with tensor cores support. This increases performance on RTX cards.')
|
||||
shared.gradio['cpu'] = gr.Checkbox(label="cpu", value=shared.args.cpu, info='llama.cpp: Use llama-cpp-python compiled without GPU acceleration. Transformers: use PyTorch in CPU mode.')
|
||||
shared.gradio['row_split'] = gr.Checkbox(label="row_split", value=shared.args.row_split, info='Split the model by rows across GPUs. This may improve multi-gpu performance.')
|
||||
shared.gradio['no_offload_kqv'] = gr.Checkbox(label="no_offload_kqv", value=shared.args.no_offload_kqv, info='Do not offload the K, Q, V to the GPU. This saves VRAM but reduces the performance.')
|
||||
shared.gradio['no_mul_mat_q'] = gr.Checkbox(label="no_mul_mat_q", value=shared.args.no_mul_mat_q, info='Disable the mulmat kernels.')
|
||||
shared.gradio['triton'] = gr.Checkbox(label="triton", value=shared.args.triton)
|
||||
shared.gradio['no_inject_fused_attention'] = gr.Checkbox(label="no_inject_fused_attention", value=shared.args.no_inject_fused_attention, info='Disable fused attention. Fused attention improves inference performance but uses more VRAM. Fuses layers for AutoAWQ. Disable if running low on VRAM.')
|
||||
shared.gradio['no_inject_fused_mlp'] = gr.Checkbox(label="no_inject_fused_mlp", value=shared.args.no_inject_fused_mlp, info='Affects Triton only. Disable fused MLP. Fused MLP improves performance but uses more VRAM. Disable if running low on VRAM.')
|
||||
shared.gradio['no_use_cuda_fp16'] = gr.Checkbox(label="no_use_cuda_fp16", value=shared.args.no_use_cuda_fp16, info='This can make models faster on some systems.')
|
||||
shared.gradio['desc_act'] = gr.Checkbox(label="desc_act", value=shared.args.desc_act, info='\'desc_act\', \'wbits\', and \'groupsize\' are used for old models without a quantize_config.json.')
|
||||
shared.gradio['no_mul_mat_q'] = gr.Checkbox(label="no_mul_mat_q", value=shared.args.no_mul_mat_q, info='Disable the mulmat kernels.')
|
||||
shared.gradio['no_mmap'] = gr.Checkbox(label="no-mmap", value=shared.args.no_mmap)
|
||||
shared.gradio['mlock'] = gr.Checkbox(label="mlock", value=shared.args.mlock)
|
||||
shared.gradio['numa'] = gr.Checkbox(label="numa", value=shared.args.numa, info='NUMA support can help on some systems with non-uniform memory access.')
|
||||
shared.gradio['cpu'] = gr.Checkbox(label="cpu", value=shared.args.cpu)
|
||||
shared.gradio['load_in_8bit'] = gr.Checkbox(label="load-in-8bit", value=shared.args.load_in_8bit)
|
||||
shared.gradio['bf16'] = gr.Checkbox(label="bf16", value=shared.args.bf16)
|
||||
shared.gradio['auto_devices'] = gr.Checkbox(label="auto-devices", value=shared.args.auto_devices)
|
||||
shared.gradio['disk'] = gr.Checkbox(label="disk", value=shared.args.disk)
|
||||
shared.gradio['load_in_4bit'] = gr.Checkbox(label="load-in-4bit", value=shared.args.load_in_4bit)
|
||||
shared.gradio['use_double_quant'] = gr.Checkbox(label="use_double_quant", value=shared.args.use_double_quant)
|
||||
shared.gradio['tensor_split'] = gr.Textbox(label='tensor_split', info='Split the model across multiple GPUs, comma-separated list of proportions, e.g. 18,17')
|
||||
shared.gradio['trust_remote_code'] = gr.Checkbox(label="trust-remote-code", value=shared.args.trust_remote_code, info='To enable this option, start the web UI with the --trust-remote-code flag. It is necessary for some models.', interactive=shared.args.trust_remote_code)
|
||||
shared.gradio['cfg_cache'] = gr.Checkbox(label="cfg-cache", value=shared.args.cfg_cache, info='Create an additional cache for CFG negative prompts.')
|
||||
shared.gradio['logits_all'] = gr.Checkbox(label="logits_all", value=shared.args.logits_all, info='Needs to be set for perplexity evaluation to work. Otherwise, ignore it, as it makes prompt processing slower.')
|
||||
shared.gradio['use_flash_attention_2'] = gr.Checkbox(label="use_flash_attention_2", value=shared.args.use_flash_attention_2, info='Set use_flash_attention_2=True while loading the model.')
|
||||
shared.gradio['disable_exllama'] = gr.Checkbox(label="disable_exllama", value=shared.args.disable_exllama, info='Disable ExLlama kernel.')
|
||||
shared.gradio['disable_exllamav2'] = gr.Checkbox(label="disable_exllamav2", value=shared.args.disable_exllamav2, info='Disable ExLlamav2 kernel.')
|
||||
shared.gradio['no_flash_attn'] = gr.Checkbox(label="no_flash_attn", value=shared.args.no_flash_attn, info='Force flash-attention to not be used.')
|
||||
shared.gradio['bf16'] = gr.Checkbox(label="bf16", value=shared.args.bf16)
|
||||
shared.gradio['cache_8bit'] = gr.Checkbox(label="cache_8bit", value=shared.args.cache_8bit, info='Use 8-bit cache to save VRAM.')
|
||||
shared.gradio['no_use_fast'] = gr.Checkbox(label="no_use_fast", value=shared.args.no_use_fast, info='Set use_fast=False while loading the tokenizer.')
|
||||
shared.gradio['no_flash_attn'] = gr.Checkbox(label="no_flash_attn", value=shared.args.no_flash_attn, info='Force flash-attention to not be used.')
|
||||
shared.gradio['cfg_cache'] = gr.Checkbox(label="cfg-cache", value=shared.args.cfg_cache, info='Necessary to use CFG with this loader.')
|
||||
shared.gradio['num_experts_per_token'] = gr.Number(label="Number of experts per token", value=shared.args.num_experts_per_token, info='Only applies to MoE models like Mixtral.')
|
||||
with gr.Blocks():
|
||||
shared.gradio['trust_remote_code'] = gr.Checkbox(label="trust-remote-code", value=shared.args.trust_remote_code, info='Set trust_remote_code=True while loading the tokenizer/model. To enable this option, start the web UI with the --trust-remote-code flag.', interactive=shared.args.trust_remote_code)
|
||||
shared.gradio['no_use_fast'] = gr.Checkbox(label="no_use_fast", value=shared.args.no_use_fast, info='Set use_fast=False while loading the tokenizer.')
|
||||
shared.gradio['logits_all'] = gr.Checkbox(label="logits_all", value=shared.args.logits_all, info='Needs to be set for perplexity evaluation to work with this loader. Otherwise, ignore it, as it makes prompt processing slower.')
|
||||
|
||||
shared.gradio['disable_exllama'] = gr.Checkbox(label="disable_exllama", value=shared.args.disable_exllama, info='Disable ExLlama kernel for GPTQ models.')
|
||||
shared.gradio['disable_exllamav2'] = gr.Checkbox(label="disable_exllamav2", value=shared.args.disable_exllamav2, info='Disable ExLlamav2 kernel for GPTQ models.')
|
||||
shared.gradio['gptq_for_llama_info'] = gr.Markdown('Legacy loader for compatibility with older GPUs. ExLlamav2_HF or AutoGPTQ are preferred for GPTQ models when supported.')
|
||||
shared.gradio['exllamav2_info'] = gr.Markdown("ExLlamav2_HF is recommended over ExLlamav2 for better integration with extensions and more consistent sampling behavior across loaders.")
|
||||
shared.gradio['llamacpp_HF_info'] = gr.Markdown('llamacpp_HF loads llama.cpp as a Transformers model. To use it, you need to download a tokenizer.\n\nOption 1 (recommended): place your .gguf in a subfolder of models/ along with these 4 files: special_tokens_map.json, tokenizer_config.json, tokenizer.json, tokenizer.model.\n\nOption 2: download `oobabooga/llama-tokenizer` under "Download model or LoRA". That\'s a default Llama tokenizer that will work for some (but not all) models.')
|
||||
|
@ -49,11 +49,12 @@ def create_ui(default_preset):
|
||||
shared.gradio['mirostat_mode'] = gr.Slider(0, 2, step=1, value=generate_params['mirostat_mode'], label='mirostat_mode', info='mode=1 is for llama.cpp only.')
|
||||
shared.gradio['mirostat_tau'] = gr.Slider(0, 10, step=0.01, value=generate_params['mirostat_tau'], label='mirostat_tau')
|
||||
shared.gradio['mirostat_eta'] = gr.Slider(0, 1, step=0.01, value=generate_params['mirostat_eta'], label='mirostat_eta')
|
||||
shared.gradio['smoothing_factor'] = gr.Slider(0.0, 10.0, value=generate_params['smoothing_factor'], step=0.01, label='smoothing_factor', info='Activates Quadratic Sampling.')
|
||||
shared.gradio['dynamic_temperature'] = gr.Checkbox(value=generate_params['dynamic_temperature'], label='dynamic_temperature')
|
||||
shared.gradio['dynatemp_low'] = gr.Slider(0.01, 5, value=generate_params['dynatemp_low'], step=0.01, label='dynatemp_low', visible=generate_params['dynamic_temperature'])
|
||||
shared.gradio['dynatemp_high'] = gr.Slider(0.01, 5, value=generate_params['dynatemp_high'], step=0.01, label='dynatemp_high', visible=generate_params['dynamic_temperature'])
|
||||
shared.gradio['dynatemp_exponent'] = gr.Slider(0.01, 5, value=generate_params['dynatemp_exponent'], step=0.01, label='dynatemp_exponent', visible=generate_params['dynamic_temperature'])
|
||||
shared.gradio['temperature_last'] = gr.Checkbox(value=generate_params['temperature_last'], label='temperature_last', info='Makes temperature the last sampler instead of the first.')
|
||||
shared.gradio['temperature_last'] = gr.Checkbox(value=generate_params['temperature_last'], label='temperature_last', info='Moves temperature/dynamic temperature/quadratic sampling to the end of the sampler stack, ignoring their positions in "Sampler priority".')
|
||||
shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample')
|
||||
shared.gradio['seed'] = gr.Number(value=shared.settings['seed'], label='Seed (-1 for random)')
|
||||
with gr.Accordion('Other parameters', open=False):
|
||||
@ -84,6 +85,9 @@ def create_ui(default_preset):
|
||||
shared.gradio['skip_special_tokens'] = gr.Checkbox(value=shared.settings['skip_special_tokens'], label='Skip special tokens', info='Some specific models need this unset.')
|
||||
shared.gradio['stream'] = gr.Checkbox(value=shared.settings['stream'], label='Activate text streaming')
|
||||
|
||||
with gr.Blocks():
|
||||
shared.gradio['sampler_priority'] = gr.Textbox(value=generate_params['sampler_priority'], lines=12, label='Sampler priority', info='Parameter names separated by new lines or commas.')
|
||||
|
||||
with gr.Row() as shared.gradio['grammar_file_row']:
|
||||
shared.gradio['grammar_file'] = gr.Dropdown(value='None', choices=utils.get_available_grammars(), label='Load grammar from file (.gbnf)', elem_classes='slim-dropdown')
|
||||
ui.create_refresh_button(shared.gradio['grammar_file'], lambda: None, lambda: {'choices': utils.get_available_grammars()}, 'refresh-button', interactive=not mu)
|
||||
|
@ -16,7 +16,7 @@ Pillow>=9.5.0
|
||||
pyyaml
|
||||
requests
|
||||
rich
|
||||
safetensors==0.4.1
|
||||
safetensors==0.4.*
|
||||
scipy
|
||||
sentencepiece
|
||||
tensorboard
|
||||
@ -29,22 +29,22 @@ bitsandbytes==0.41.1; platform_system != "Windows"
|
||||
https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.1-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
|
||||
# llama-cpp-python (CPU only, AVX2)
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.36+cpuavx2-cp311-cp311-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.36+cpuavx2-cp310-cp310-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.36+cpuavx2-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.36+cpuavx2-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.38+cpuavx2-cp311-cp311-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.38+cpuavx2-cp310-cp310-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.38+cpuavx2-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.38+cpuavx2-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
|
||||
|
||||
# llama-cpp-python (CUDA, no tensor cores)
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.36+cu121-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.36+cu121-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.36+cu121-cp311-cp311-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.36+cu121-cp310-cp310-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.38+cu121-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.38+cu121-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.38+cu121-cp311-cp311-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.38+cu121-cp310-cp310-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
|
||||
|
||||
# llama-cpp-python (CUDA, tensor cores)
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.36+cu121-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.36+cu121-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.36+cu121-cp311-cp311-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.36+cu121-cp310-cp310-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.38+cu121-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.38+cu121-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.38+cu121-cp311-cp311-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.38+cu121-cp310-cp310-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
|
||||
|
||||
# CUDA wheels
|
||||
https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+cu121-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
|
||||
|
@ -16,7 +16,7 @@ Pillow>=9.5.0
|
||||
pyyaml
|
||||
requests
|
||||
rich
|
||||
safetensors==0.4.1
|
||||
safetensors==0.4.*
|
||||
scipy
|
||||
sentencepiece
|
||||
tensorboard
|
||||
@ -29,14 +29,14 @@ bitsandbytes==0.38.1; platform_system != "Windows"
|
||||
https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.38.1-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
|
||||
# llama-cpp-python (CPU only, AVX2)
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.36+cpuavx2-cp311-cp311-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.36+cpuavx2-cp310-cp310-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.36+cpuavx2-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.36+cpuavx2-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.38+cpuavx2-cp311-cp311-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.38+cpuavx2-cp310-cp310-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.38+cpuavx2-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.38+cpuavx2-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
|
||||
|
||||
# AMD wheels
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/rocm/llama_cpp_python_cuda-0.2.36+rocm5.6.1-cp311-cp311-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/rocm/llama_cpp_python_cuda-0.2.36+rocm5.6.1-cp310-cp310-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/rocm/llama_cpp_python_cuda-0.2.38+rocm5.6.1-cp311-cp311-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/rocm/llama_cpp_python_cuda-0.2.38+rocm5.6.1-cp310-cp310-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
|
||||
https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+rocm5.6-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+rocm5.6-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
|
||||
https://github.com/turboderp/exllamav2/releases/download/v0.0.12/exllamav2-0.0.12+rocm5.6-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
|
@ -16,7 +16,7 @@ Pillow>=9.5.0
|
||||
pyyaml
|
||||
requests
|
||||
rich
|
||||
safetensors==0.4.1
|
||||
safetensors==0.4.*
|
||||
scipy
|
||||
sentencepiece
|
||||
tensorboard
|
||||
@ -29,10 +29,10 @@ bitsandbytes==0.38.1; platform_system != "Windows"
|
||||
https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.38.1-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
|
||||
# llama-cpp-python (CPU only, no AVX2)
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.36+cpuavx-cp311-cp311-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.36+cpuavx-cp310-cp310-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.36+cpuavx-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.36+cpuavx-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.38+cpuavx-cp311-cp311-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.38+cpuavx-cp310-cp310-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.38+cpuavx-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.38+cpuavx-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
|
||||
|
||||
# AMD wheels
|
||||
https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+rocm5.6-cp311-cp311-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
|
@ -16,7 +16,7 @@ Pillow>=9.5.0
|
||||
pyyaml
|
||||
requests
|
||||
rich
|
||||
safetensors==0.4.1
|
||||
safetensors==0.4.*
|
||||
scipy
|
||||
sentencepiece
|
||||
tensorboard
|
||||
@ -29,9 +29,9 @@ bitsandbytes==0.41.1; platform_system != "Windows"
|
||||
https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.1-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
|
||||
# Mac wheels
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.36-cp311-cp311-macosx_11_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "20.0.0" and platform_release < "21.0.0" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.36-cp310-cp310-macosx_11_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "20.0.0" and platform_release < "21.0.0" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.36-cp311-cp311-macosx_12_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "21.0.0" and platform_release < "22.0.0" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.36-cp310-cp310-macosx_12_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "21.0.0" and platform_release < "22.0.0" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.36-cp311-cp311-macosx_14_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.36-cp310-cp310-macosx_14_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.38-cp311-cp311-macosx_11_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "20.0.0" and platform_release < "21.0.0" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.38-cp310-cp310-macosx_11_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "20.0.0" and platform_release < "21.0.0" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.38-cp311-cp311-macosx_12_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "21.0.0" and platform_release < "22.0.0" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.38-cp310-cp310-macosx_12_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "21.0.0" and platform_release < "22.0.0" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.38-cp311-cp311-macosx_14_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.38-cp310-cp310-macosx_14_0_x86_64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.10"
|
||||
|
@ -16,7 +16,7 @@ Pillow>=9.5.0
|
||||
pyyaml
|
||||
requests
|
||||
rich
|
||||
safetensors==0.4.1
|
||||
safetensors==0.4.*
|
||||
scipy
|
||||
sentencepiece
|
||||
tensorboard
|
||||
@ -29,11 +29,11 @@ bitsandbytes==0.41.1; platform_system != "Windows"
|
||||
https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.1-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
|
||||
# Mac wheels
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.36-cp311-cp311-macosx_11_0_arm64.whl; platform_system == "Darwin" and platform_release >= "20.0.0" and platform_release < "21.0.0" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.36-cp310-cp310-macosx_11_0_arm64.whl; platform_system == "Darwin" and platform_release >= "20.0.0" and platform_release < "21.0.0" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.36-cp311-cp311-macosx_12_0_arm64.whl; platform_system == "Darwin" and platform_release >= "21.0.0" and platform_release < "22.0.0" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.36-cp310-cp310-macosx_12_0_arm64.whl; platform_system == "Darwin" and platform_release >= "21.0.0" and platform_release < "22.0.0" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.36-cp311-cp311-macosx_13_0_arm64.whl; platform_system == "Darwin" and platform_release >= "22.0.0" and platform_release < "23.0.0" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.36-cp310-cp310-macosx_13_0_arm64.whl; platform_system == "Darwin" and platform_release >= "22.0.0" and platform_release < "23.0.0" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.36-cp311-cp311-macosx_14_0_arm64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.36-cp310-cp310-macosx_14_0_arm64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.38-cp311-cp311-macosx_11_0_arm64.whl; platform_system == "Darwin" and platform_release >= "20.0.0" and platform_release < "21.0.0" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.38-cp310-cp310-macosx_11_0_arm64.whl; platform_system == "Darwin" and platform_release >= "20.0.0" and platform_release < "21.0.0" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.38-cp311-cp311-macosx_12_0_arm64.whl; platform_system == "Darwin" and platform_release >= "21.0.0" and platform_release < "22.0.0" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.38-cp310-cp310-macosx_12_0_arm64.whl; platform_system == "Darwin" and platform_release >= "21.0.0" and platform_release < "22.0.0" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.38-cp311-cp311-macosx_13_0_arm64.whl; platform_system == "Darwin" and platform_release >= "22.0.0" and platform_release < "23.0.0" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.38-cp310-cp310-macosx_13_0_arm64.whl; platform_system == "Darwin" and platform_release >= "22.0.0" and platform_release < "23.0.0" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.38-cp311-cp311-macosx_14_0_arm64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/metal/llama_cpp_python-0.2.38-cp310-cp310-macosx_14_0_arm64.whl; platform_system == "Darwin" and platform_release >= "23.0.0" and platform_release < "24.0.0" and python_version == "3.10"
|
||||
|
@ -16,7 +16,7 @@ Pillow>=9.5.0
|
||||
pyyaml
|
||||
requests
|
||||
rich
|
||||
safetensors==0.4.1
|
||||
safetensors==0.4.*
|
||||
scipy
|
||||
sentencepiece
|
||||
tensorboard
|
||||
@ -29,7 +29,7 @@ bitsandbytes==0.41.1; platform_system != "Windows"
|
||||
https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.1-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
|
||||
# llama-cpp-python (CPU only, AVX2)
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.36+cpuavx2-cp311-cp311-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.36+cpuavx2-cp310-cp310-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.36+cpuavx2-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.36+cpuavx2-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.38+cpuavx2-cp311-cp311-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.38+cpuavx2-cp310-cp310-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.38+cpuavx2-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.38+cpuavx2-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
|
||||
|
@ -16,7 +16,7 @@ Pillow>=9.5.0
|
||||
pyyaml
|
||||
requests
|
||||
rich
|
||||
safetensors==0.4.1
|
||||
safetensors==0.4.*
|
||||
scipy
|
||||
sentencepiece
|
||||
tensorboard
|
||||
@ -29,7 +29,7 @@ bitsandbytes==0.41.1; platform_system != "Windows"
|
||||
https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.1-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
|
||||
# llama-cpp-python (CPU only, no AVX2)
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.36+cpuavx-cp311-cp311-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.36+cpuavx-cp310-cp310-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.36+cpuavx-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.36+cpuavx-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.38+cpuavx-cp311-cp311-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.38+cpuavx-cp310-cp310-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.38+cpuavx-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.38+cpuavx-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
|
||||
|
@ -16,7 +16,7 @@ Pillow>=9.5.0
|
||||
pyyaml
|
||||
requests
|
||||
rich
|
||||
safetensors==0.4.1
|
||||
safetensors==0.4.*
|
||||
scipy
|
||||
sentencepiece
|
||||
tensorboard
|
||||
@ -29,22 +29,22 @@ bitsandbytes==0.41.1; platform_system != "Windows"
|
||||
https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.1-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||
|
||||
# llama-cpp-python (CPU only, no AVX2)
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.36+cpuavx-cp311-cp311-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.36+cpuavx-cp310-cp310-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.36+cpuavx-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.36+cpuavx-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.38+cpuavx-cp311-cp311-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.38+cpuavx-cp310-cp310-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.38+cpuavx-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python-0.2.38+cpuavx-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
|
||||
|
||||
# llama-cpp-python (CUDA, no tensor cores)
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.36+cu121avx-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.36+cu121avx-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.36+cu121avx-cp311-cp311-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.36+cu121avx-cp310-cp310-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.38+cu121avx-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.38+cu121avx-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.38+cu121avx-cp311-cp311-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.2.38+cu121avx-cp310-cp310-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
|
||||
|
||||
# llama-cpp-python (CUDA, tensor cores)
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.36+cu121avx-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.36+cu121avx-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.36+cu121avx-cp311-cp311-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.36+cu121avx-cp310-cp310-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.38+cu121avx-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.38+cu121avx-cp310-cp310-win_amd64.whl; platform_system == "Windows" and python_version == "3.10"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.38+cu121avx-cp311-cp311-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.11"
|
||||
https://github.com/oobabooga/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda_tensorcores-0.2.38+cu121avx-cp310-cp310-manylinux_2_31_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.10"
|
||||
|
||||
# CUDA wheels
|
||||
https://github.com/jllllll/AutoGPTQ/releases/download/v0.6.0/auto_gptq-0.6.0+cu121-cp311-cp311-win_amd64.whl; platform_system == "Windows" and python_version == "3.11"
|
||||
|
@ -16,7 +16,7 @@ Pillow>=9.5.0
|
||||
pyyaml
|
||||
requests
|
||||
rich
|
||||
safetensors==0.4.1
|
||||
safetensors==0.4.*
|
||||
scipy
|
||||
sentencepiece
|
||||
tensorboard
|
||||
|
Loading…
Reference in New Issue
Block a user