mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-22 08:07:56 +01:00
Use BLIP to send a picture to model
This commit is contained in:
parent
79d3a524f2
commit
a7d98f494a
9
modules/bot_picture.py
Normal file
9
modules/bot_picture.py
Normal file
@ -0,0 +1,9 @@
|
|||||||
|
from nataili_blip.model_manager import BlipModelManager
|
||||||
|
from nataili_blip.caption import Caption
|
||||||
|
|
||||||
|
def load_model():
|
||||||
|
model_name = "BLIP"
|
||||||
|
mm = BlipModelManager()
|
||||||
|
mm.download_model(model_name)
|
||||||
|
mm.load_blip(model_name)
|
||||||
|
return Caption(mm.loaded_models[model_name]["model"], mm.loaded_models[model_name]["device"])
|
@ -217,6 +217,12 @@ def generate_chat_html(history, name1, name2, character):
|
|||||||
|
|
||||||
.body {
|
.body {
|
||||||
}
|
}
|
||||||
|
|
||||||
|
.body img {
|
||||||
|
max-width: 300px;
|
||||||
|
max-height: 300px;
|
||||||
|
border-radius: 20px;
|
||||||
|
}
|
||||||
"""
|
"""
|
||||||
|
|
||||||
output = ''
|
output = ''
|
||||||
|
@ -4,4 +4,5 @@ bitsandbytes==0.37.0
|
|||||||
gradio==3.15.0
|
gradio==3.15.0
|
||||||
numpy
|
numpy
|
||||||
safetensors==0.2.8
|
safetensors==0.2.8
|
||||||
|
nataili_blip
|
||||||
git+https://github.com/huggingface/transformers
|
git+https://github.com/huggingface/transformers
|
||||||
|
60
server.py
60
server.py
@ -23,6 +23,7 @@ from tqdm import tqdm
|
|||||||
from transformers import AutoConfig
|
from transformers import AutoConfig
|
||||||
from transformers import AutoModelForCausalLM
|
from transformers import AutoModelForCausalLM
|
||||||
from transformers import AutoTokenizer
|
from transformers import AutoTokenizer
|
||||||
|
from io import BytesIO
|
||||||
|
|
||||||
from modules.html_generator import *
|
from modules.html_generator import *
|
||||||
from modules.stopping_criteria import _SentinelTokenStoppingCriteria
|
from modules.stopping_criteria import _SentinelTokenStoppingCriteria
|
||||||
@ -53,6 +54,7 @@ parser.add_argument('--listen', action='store_true', help='Make the web UI reach
|
|||||||
parser.add_argument('--listen-port', type=int, help='The listening port that the server will use.')
|
parser.add_argument('--listen-port', type=int, help='The listening port that the server will use.')
|
||||||
parser.add_argument('--share', action='store_true', help='Create a public URL. This is useful for running the web UI on Google Colab or similar.')
|
parser.add_argument('--share', action='store_true', help='Create a public URL. This is useful for running the web UI on Google Colab or similar.')
|
||||||
parser.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.')
|
parser.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.')
|
||||||
|
parser.add_argument('--picture', action='store_true', help='Adds an ability to send pictures in chat UI modes.')
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
if (args.chat or args.cai_chat) and not args.no_stream:
|
if (args.chat or args.cai_chat) and not args.no_stream:
|
||||||
@ -97,6 +99,10 @@ if args.deepspeed:
|
|||||||
ds_config = generate_ds_config(args.bf16, 1 * world_size, args.nvme_offload_dir)
|
ds_config = generate_ds_config(args.bf16, 1 * world_size, args.nvme_offload_dir)
|
||||||
dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
|
dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
|
||||||
|
|
||||||
|
if args.picture and (args.cai_chat or args.chat):
|
||||||
|
import modules.bot_picture as bot_picture
|
||||||
|
blip = bot_picture.load_model()
|
||||||
|
|
||||||
def load_model(model_name):
|
def load_model(model_name):
|
||||||
print(f"Loading {model_name}...")
|
print(f"Loading {model_name}...")
|
||||||
t0 = time.time()
|
t0 = time.time()
|
||||||
@ -561,8 +567,12 @@ def extract_message_from_reply(question, reply, current, other, check, extension
|
|||||||
|
|
||||||
return reply, next_character_found, substring_found
|
return reply, next_character_found, substring_found
|
||||||
|
|
||||||
def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
|
def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
|
||||||
original_text = text
|
original_text = text
|
||||||
|
|
||||||
|
if args.picture and picture is not None:
|
||||||
|
text, original_text = generate_chat_picture(picture, name1, name2)
|
||||||
|
|
||||||
text = apply_extensions(text, "input")
|
text = apply_extensions(text, "input")
|
||||||
question = generate_chat_prompt(text, tokens, name1, name2, context, history_size)
|
question = generate_chat_prompt(text, tokens, name1, name2, context, history_size)
|
||||||
history['internal'].append(['', ''])
|
history['internal'].append(['', ''])
|
||||||
@ -573,12 +583,12 @@ def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p,
|
|||||||
history['internal'][-1] = [text, reply]
|
history['internal'][-1] = [text, reply]
|
||||||
history['visible'][-1] = [original_text, apply_extensions(reply, "output")]
|
history['visible'][-1] = [original_text, apply_extensions(reply, "output")]
|
||||||
if not substring_found:
|
if not substring_found:
|
||||||
yield history['visible']
|
yield history['visible'], None
|
||||||
if next_character_found:
|
if next_character_found:
|
||||||
break
|
break
|
||||||
yield history['visible']
|
yield history['visible'], None
|
||||||
|
|
||||||
def impersonate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
|
def impersonate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
|
||||||
question = generate_chat_prompt(text, tokens, name1, name2, context, history_size, impersonate=True)
|
question = generate_chat_prompt(text, tokens, name1, name2, context, history_size, impersonate=True)
|
||||||
eos_token = '\n' if check else None
|
eos_token = '\n' if check else None
|
||||||
for reply in generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name2}:"):
|
for reply in generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name2}:"):
|
||||||
@ -589,20 +599,20 @@ def impersonate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, to
|
|||||||
break
|
break
|
||||||
yield apply_extensions(reply, "output")
|
yield apply_extensions(reply, "output")
|
||||||
|
|
||||||
def cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
|
def cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
|
||||||
for _history in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
|
for _history, _ in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
|
||||||
yield generate_chat_html(_history, name1, name2, character)
|
yield generate_chat_html(_history, name1, name2, character), None
|
||||||
|
|
||||||
def regenerate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
|
def regenerate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
|
||||||
last = history['visible'].pop()
|
last = history['visible'].pop()
|
||||||
history['internal'].pop()
|
history['internal'].pop()
|
||||||
text = last[0]
|
text = last[0]
|
||||||
if args.cai_chat:
|
if args.cai_chat:
|
||||||
for i in cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
|
for i, _ in cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
|
||||||
yield i
|
yield i, None
|
||||||
else:
|
else:
|
||||||
for i in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
|
for i, _ in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
|
||||||
yield i
|
yield i, None
|
||||||
|
|
||||||
def remove_last_message(name1, name2):
|
def remove_last_message(name1, name2):
|
||||||
if not history['internal'][-1][0] == '<|BEGIN-VISIBLE-CHAT|>':
|
if not history['internal'][-1][0] == '<|BEGIN-VISIBLE-CHAT|>':
|
||||||
@ -791,6 +801,14 @@ def upload_your_profile_picture(img):
|
|||||||
img.save(Path(f'img_me.png'))
|
img.save(Path(f'img_me.png'))
|
||||||
print(f'Profile picture saved to "img_me.png"')
|
print(f'Profile picture saved to "img_me.png"')
|
||||||
|
|
||||||
|
def generate_chat_picture(picture, name1, name2):
|
||||||
|
text = f'*{name1} sends {name2} a picture that contains the following: "{blip(picture)}"*'
|
||||||
|
buffer = BytesIO()
|
||||||
|
picture.save(buffer, format="JPEG")
|
||||||
|
img_str = base64.b64encode(buffer.getvalue()).decode('utf-8')
|
||||||
|
original_text = f'<img src="data:image/jpeg;base64,{img_str}">'
|
||||||
|
return text, original_text
|
||||||
|
|
||||||
# Global variables
|
# Global variables
|
||||||
available_models = get_available_models()
|
available_models = get_available_models()
|
||||||
available_presets = get_available_presets()
|
available_presets = get_available_presets()
|
||||||
@ -861,6 +879,9 @@ if args.chat or args.cai_chat:
|
|||||||
with gr.Row():
|
with gr.Row():
|
||||||
buttons["Send last reply to input"] = gr.Button("Send last reply to input")
|
buttons["Send last reply to input"] = gr.Button("Send last reply to input")
|
||||||
buttons["Replace last reply"] = gr.Button("Replace last reply")
|
buttons["Replace last reply"] = gr.Button("Replace last reply")
|
||||||
|
if args.picture:
|
||||||
|
with gr.Row():
|
||||||
|
picture_select = gr.Image(label="Send a picture", type='pil', display_label=True)
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
@ -906,14 +927,17 @@ if args.chat or args.cai_chat:
|
|||||||
if args.extensions is not None:
|
if args.extensions is not None:
|
||||||
create_extensions_block()
|
create_extensions_block()
|
||||||
|
|
||||||
input_params = [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size_slider]
|
input_params = [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size_slider, picture_select]
|
||||||
|
output_params = [display, picture_select]
|
||||||
if args.cai_chat:
|
if args.cai_chat:
|
||||||
gen_events.append(buttons["Generate"].click(cai_chatbot_wrapper, input_params, display, show_progress=args.no_stream, api_name="textgen"))
|
gen_events.append(buttons["Generate"].click(cai_chatbot_wrapper, input_params, output_params, show_progress=args.no_stream, api_name="textgen"))
|
||||||
gen_events.append(textbox.submit(cai_chatbot_wrapper, input_params, display, show_progress=args.no_stream))
|
gen_events.append(textbox.submit(cai_chatbot_wrapper, input_params, output_params, show_progress=args.no_stream))
|
||||||
|
picture_select.upload(cai_chatbot_wrapper, input_params, output_params, show_progress=args.no_stream)
|
||||||
else:
|
else:
|
||||||
gen_events.append(buttons["Generate"].click(chatbot_wrapper, input_params, display, show_progress=args.no_stream, api_name="textgen"))
|
gen_events.append(buttons["Generate"].click(chatbot_wrapper, input_params, output_params, show_progress=args.no_stream, api_name="textgen"))
|
||||||
gen_events.append(textbox.submit(chatbot_wrapper, input_params, display, show_progress=args.no_stream))
|
gen_events.append(textbox.submit(chatbot_wrapper, input_params, output_params, show_progress=args.no_stream))
|
||||||
gen_events.append(buttons["Regenerate"].click(regenerate_wrapper, input_params, display, show_progress=args.no_stream))
|
picture_select.upload(chatbot_wrapper, input_params, output_params, show_progress=args.no_stream)
|
||||||
|
gen_events.append(buttons["Regenerate"].click(regenerate_wrapper, input_params, output_params, show_progress=args.no_stream))
|
||||||
gen_events.append(buttons["Impersonate"].click(impersonate_wrapper, input_params, textbox, show_progress=args.no_stream))
|
gen_events.append(buttons["Impersonate"].click(impersonate_wrapper, input_params, textbox, show_progress=args.no_stream))
|
||||||
|
|
||||||
buttons["Send last reply to input"].click(send_last_reply_to_input, [], textbox, show_progress=args.no_stream)
|
buttons["Send last reply to input"].click(send_last_reply_to_input, [], textbox, show_progress=args.no_stream)
|
||||||
|
Loading…
Reference in New Issue
Block a user