Use BLIP to send a picture to model

This commit is contained in:
SillyLossy 2023-02-15 01:38:21 +02:00
parent 79d3a524f2
commit a7d98f494a
4 changed files with 58 additions and 18 deletions

9
modules/bot_picture.py Normal file
View File

@ -0,0 +1,9 @@
from nataili_blip.model_manager import BlipModelManager
from nataili_blip.caption import Caption
def load_model():
model_name = "BLIP"
mm = BlipModelManager()
mm.download_model(model_name)
mm.load_blip(model_name)
return Caption(mm.loaded_models[model_name]["model"], mm.loaded_models[model_name]["device"])

View File

@ -217,6 +217,12 @@ def generate_chat_html(history, name1, name2, character):
.body {
}
.body img {
max-width: 300px;
max-height: 300px;
border-radius: 20px;
}
"""
output = ''

View File

@ -4,4 +4,5 @@ bitsandbytes==0.37.0
gradio==3.15.0
numpy
safetensors==0.2.8
nataili_blip
git+https://github.com/huggingface/transformers

View File

@ -23,6 +23,7 @@ from tqdm import tqdm
from transformers import AutoConfig
from transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
from io import BytesIO
from modules.html_generator import *
from modules.stopping_criteria import _SentinelTokenStoppingCriteria
@ -53,6 +54,7 @@ parser.add_argument('--listen', action='store_true', help='Make the web UI reach
parser.add_argument('--listen-port', type=int, help='The listening port that the server will use.')
parser.add_argument('--share', action='store_true', help='Create a public URL. This is useful for running the web UI on Google Colab or similar.')
parser.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.')
parser.add_argument('--picture', action='store_true', help='Adds an ability to send pictures in chat UI modes.')
args = parser.parse_args()
if (args.chat or args.cai_chat) and not args.no_stream:
@ -97,6 +99,10 @@ if args.deepspeed:
ds_config = generate_ds_config(args.bf16, 1 * world_size, args.nvme_offload_dir)
dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
if args.picture and (args.cai_chat or args.chat):
import modules.bot_picture as bot_picture
blip = bot_picture.load_model()
def load_model(model_name):
print(f"Loading {model_name}...")
t0 = time.time()
@ -561,8 +567,12 @@ def extract_message_from_reply(question, reply, current, other, check, extension
return reply, next_character_found, substring_found
def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
original_text = text
if args.picture and picture is not None:
text, original_text = generate_chat_picture(picture, name1, name2)
text = apply_extensions(text, "input")
question = generate_chat_prompt(text, tokens, name1, name2, context, history_size)
history['internal'].append(['', ''])
@ -573,12 +583,12 @@ def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p,
history['internal'][-1] = [text, reply]
history['visible'][-1] = [original_text, apply_extensions(reply, "output")]
if not substring_found:
yield history['visible']
yield history['visible'], None
if next_character_found:
break
yield history['visible']
yield history['visible'], None
def impersonate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
def impersonate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
question = generate_chat_prompt(text, tokens, name1, name2, context, history_size, impersonate=True)
eos_token = '\n' if check else None
for reply in generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name2}:"):
@ -589,20 +599,20 @@ def impersonate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, to
break
yield apply_extensions(reply, "output")
def cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
for _history in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
yield generate_chat_html(_history, name1, name2, character)
def cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
for _history, _ in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
yield generate_chat_html(_history, name1, name2, character), None
def regenerate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
def regenerate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
last = history['visible'].pop()
history['internal'].pop()
text = last[0]
if args.cai_chat:
for i in cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
yield i
for i, _ in cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
yield i, None
else:
for i in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
yield i
for i, _ in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
yield i, None
def remove_last_message(name1, name2):
if not history['internal'][-1][0] == '<|BEGIN-VISIBLE-CHAT|>':
@ -791,6 +801,14 @@ def upload_your_profile_picture(img):
img.save(Path(f'img_me.png'))
print(f'Profile picture saved to "img_me.png"')
def generate_chat_picture(picture, name1, name2):
text = f'*{name1} sends {name2} a picture that contains the following: "{blip(picture)}"*'
buffer = BytesIO()
picture.save(buffer, format="JPEG")
img_str = base64.b64encode(buffer.getvalue()).decode('utf-8')
original_text = f'<img src="data:image/jpeg;base64,{img_str}">'
return text, original_text
# Global variables
available_models = get_available_models()
available_presets = get_available_presets()
@ -861,6 +879,9 @@ if args.chat or args.cai_chat:
with gr.Row():
buttons["Send last reply to input"] = gr.Button("Send last reply to input")
buttons["Replace last reply"] = gr.Button("Replace last reply")
if args.picture:
with gr.Row():
picture_select = gr.Image(label="Send a picture", type='pil', display_label=True)
with gr.Row():
with gr.Column():
@ -906,14 +927,17 @@ if args.chat or args.cai_chat:
if args.extensions is not None:
create_extensions_block()
input_params = [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size_slider]
input_params = [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size_slider, picture_select]
output_params = [display, picture_select]
if args.cai_chat:
gen_events.append(buttons["Generate"].click(cai_chatbot_wrapper, input_params, display, show_progress=args.no_stream, api_name="textgen"))
gen_events.append(textbox.submit(cai_chatbot_wrapper, input_params, display, show_progress=args.no_stream))
gen_events.append(buttons["Generate"].click(cai_chatbot_wrapper, input_params, output_params, show_progress=args.no_stream, api_name="textgen"))
gen_events.append(textbox.submit(cai_chatbot_wrapper, input_params, output_params, show_progress=args.no_stream))
picture_select.upload(cai_chatbot_wrapper, input_params, output_params, show_progress=args.no_stream)
else:
gen_events.append(buttons["Generate"].click(chatbot_wrapper, input_params, display, show_progress=args.no_stream, api_name="textgen"))
gen_events.append(textbox.submit(chatbot_wrapper, input_params, display, show_progress=args.no_stream))
gen_events.append(buttons["Regenerate"].click(regenerate_wrapper, input_params, display, show_progress=args.no_stream))
gen_events.append(buttons["Generate"].click(chatbot_wrapper, input_params, output_params, show_progress=args.no_stream, api_name="textgen"))
gen_events.append(textbox.submit(chatbot_wrapper, input_params, output_params, show_progress=args.no_stream))
picture_select.upload(chatbot_wrapper, input_params, output_params, show_progress=args.no_stream)
gen_events.append(buttons["Regenerate"].click(regenerate_wrapper, input_params, output_params, show_progress=args.no_stream))
gen_events.append(buttons["Impersonate"].click(impersonate_wrapper, input_params, textbox, show_progress=args.no_stream))
buttons["Send last reply to input"].click(send_last_reply_to_input, [], textbox, show_progress=args.no_stream)