Merge pull request #2587 from oobabooga/dev

This commit is contained in:
oobabooga 2023-06-09 00:30:59 -03:00 committed by GitHub
commit aaf240a14c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 281 additions and 14 deletions

176
api-examples/api-example-model.py Executable file
View File

@ -0,0 +1,176 @@
#!/usr/bin/env python3
import requests
HOST = '0.0.0.0:5000'
def generate(prompt, tokens = 200):
request = { 'prompt': prompt, 'max_new_tokens': tokens }
response = requests.post(f'http://{HOST}/api/v1/generate', json=request)
if response.status_code == 200:
return response.json()['results'][0]['text']
def model_api(request):
response = requests.post(f'http://{HOST}/api/v1/model', json=request)
return response.json()
# print some common settings
def print_basic_model_info(response):
basic_settings = ['truncation_length', 'instruction_template']
print("Model: ", response['result']['model_name'])
print("Lora(s): ", response['result']['lora_names'])
for setting in basic_settings:
print(setting, "=", response['result']['shared.settings'][setting])
# model info
def model_info():
response = model_api({'action': 'info'})
print_basic_model_info(response)
# simple loader
def model_load(model_name):
return model_api({'action': 'load', 'model_name': model_name})
# complex loader
def complex_model_load(model):
def guess_groupsize(model_name):
if '1024g' in model_name:
return 1024
elif '128g' in model_name:
return 128
elif '32g' in model_name:
return 32
else:
return -1
req = {
'action': 'load',
'model_name': model,
'args': {
'gptq_for_llama': False, # Use AutoGPTQ by default, set to True for gptq-for-llama
'bf16': False,
'load_in_8bit': False,
'groupsize': 0,
'wbits': 0,
# llama.cpp
'threads': 0,
'n_batch': 512,
'no_mmap': False,
'mlock': False,
'cache_capacity': None,
'n_gpu_layers': 0,
'n_ctx': 2048,
# RWKV
'rwkv_strategy': None,
'rwkv_cuda_on': False,
# b&b 4-bit
#'load_in_4bit': False,
#'compute_dtype': 'float16',
#'quant_type': 'nf4',
#'use_double_quant': False,
#"cpu": false,
#"auto_devices": false,
#"gpu_memory": null,
#"cpu_memory": null,
#"disk": false,
#"disk_cache_dir": "cache",
},
}
model = model.lower()
if '4bit' in model or 'gptq' in model or 'int4' in model:
req['args']['wbits'] = 4
req['args']['groupsize'] = guess_groupsize(model)
elif '3bit' in model:
req['args']['wbits'] = 3
req['args']['groupsize'] = guess_groupsize(model)
else:
req['args']['gptq_for_llama'] = False
if '8bit' in model:
req['args']['load_in_8bit'] = True
elif '-hf' in model or 'fp16' in model:
if '7b' in model:
req['args']['bf16'] = True # for 24GB
elif '13b' in model:
req['args']['load_in_8bit'] = True # for 24GB
elif 'ggml' in model:
#req['args']['threads'] = 16
if '7b' in model:
req['args']['n_gpu_layers'] = 100
elif '13b' in model:
req['args']['n_gpu_layers'] = 100
elif '30b' in model or '33b' in model:
req['args']['n_gpu_layers'] = 59 # 24GB
elif '65b' in model:
req['args']['n_gpu_layers'] = 42 # 24GB
elif 'rwkv' in model:
req['args']['rwkv_cuda_on'] = True
if '14b' in model:
req['args']['rwkv_strategy'] = 'cuda f16i8' # 24GB
else:
req['args']['rwkv_strategy'] = 'cuda f16' # 24GB
return model_api(req)
if __name__ == '__main__':
for model in model_api({'action': 'list'})['result']:
try:
resp = complex_model_load(model)
if 'error' in resp:
print (f"{model} FAIL Error: {resp['error']['message']}")
continue
else:
print_basic_model_info(resp)
ans = generate("0,1,1,2,3,5,8,13,", tokens=2)
if '21' in ans:
print (f"{model} PASS ({ans})")
else:
print (f"{model} FAIL ({ans})")
except Exception as e:
print (f"{model} FAIL Exception: {repr(e)}")
# 0,1,1,2,3,5,8,13, is the fibonacci sequence, the next number is 21.
# Some results below.
""" $ ./model-api-example.py
Model: 4bit_gpt4-x-alpaca-13b-native-4bit-128g-cuda
Lora(s): []
truncation_length = 2048
instruction_template = Alpaca
4bit_gpt4-x-alpaca-13b-native-4bit-128g-cuda PASS (21)
Model: 4bit_WizardLM-13B-Uncensored-4bit-128g
Lora(s): []
truncation_length = 2048
instruction_template = WizardLM
4bit_WizardLM-13B-Uncensored-4bit-128g PASS (21)
Model: Aeala_VicUnlocked-alpaca-30b-4bit
Lora(s): []
truncation_length = 2048
instruction_template = Alpaca
Aeala_VicUnlocked-alpaca-30b-4bit PASS (21)
Model: alpaca-30b-4bit
Lora(s): []
truncation_length = 2048
instruction_template = Alpaca
alpaca-30b-4bit PASS (21)
"""

View File

@ -0,0 +1,4 @@
user: "### Human:"
bot: "### Assistant:"
turn_template: "<|user|> <|user-message|>\n<|bot|> <|bot-message|></s>\n"
context: ""

View File

@ -28,9 +28,15 @@ Once downloaded, it will be automatically applied to **every** `LlamaForCausalLM
pip install protobuf==3.20.1 pip install protobuf==3.20.1
``` ```
2. Use the script below to convert the model in `.pth` format that you, a fellow academic, downloaded using Meta's official link: 2. Use the script below to convert the model in `.pth` format that you, a fellow academic, downloaded using Meta's official link.
### [convert_llama_weights_to_hf.py](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py) If you have `transformers` installed in place:
```
python -m transformers.models.llama.convert_llama_weights_to_hf --input_dir /path/to/LLaMA --model_size 7B --output_dir /tmp/outputs/llama-7b
```
Otherwise download [convert_llama_weights_to_hf.py](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py) first and run:
``` ```
python convert_llama_weights_to_hf.py --input_dir /path/to/LLaMA --model_size 7B --output_dir /tmp/outputs/llama-7b python convert_llama_weights_to_hf.py --input_dir /path/to/LLaMA --model_size 7B --output_dir /tmp/outputs/llama-7b

View File

@ -108,7 +108,7 @@ class ModelDownloader:
is_lora = False is_lora = False
while True: while True:
url = f"{base}{page}" + (f"?cursor={cursor.decode()}" if cursor else "") url = f"{base}{page}" + (f"?cursor={cursor.decode()}" if cursor else "")
r = self.s.get(url, timeout=10) r = self.s.get(url, timeout=20)
r.raise_for_status() r.raise_for_status()
content = r.content content = r.content
@ -180,7 +180,7 @@ class ModelDownloader:
output_path = output_folder / filename output_path = output_folder / filename
if output_path.exists() and not start_from_scratch: if output_path.exists() and not start_from_scratch:
# Check if the file has already been downloaded completely # Check if the file has already been downloaded completely
r = self.s.get(url, stream=True, timeout=10) r = self.s.get(url, stream=True, timeout=20)
total_size = int(r.headers.get('content-length', 0)) total_size = int(r.headers.get('content-length', 0))
if output_path.stat().st_size >= total_size: if output_path.stat().st_size >= total_size:
return return
@ -191,7 +191,7 @@ class ModelDownloader:
headers = {} headers = {}
mode = 'wb' mode = 'wb'
r = self.s.get(url, stream=True, headers=headers, timeout=10) r = self.s.get(url, stream=True, headers=headers, timeout=20)
with open(output_path, mode) as f: with open(output_path, mode) as f:
total_size = int(r.headers.get('content-length', 0)) total_size = int(r.headers.get('content-length', 0))
block_size = 1024 block_size = 1024

View File

@ -5,9 +5,23 @@ from threading import Thread
from extensions.api.util import build_parameters, try_start_cloudflared from extensions.api.util import build_parameters, try_start_cloudflared
from modules import shared from modules import shared
from modules.chat import generate_chat_reply from modules.chat import generate_chat_reply
from modules.text_generation import encode, generate_reply, stop_everything_event from modules.LoRA import add_lora_to_model
from modules.models import load_model, unload_model
from modules.text_generation import (encode, generate_reply,
stop_everything_event)
from modules.utils import get_available_models
from server import get_model_specific_settings, update_model_parameters
def get_model_info():
return {
'model_name': shared.model_name,
'lora_names': shared.lora_names,
# dump
'shared.settings': shared.settings,
'shared.args': vars(shared.args),
}
class Handler(BaseHTTPRequestHandler): class Handler(BaseHTTPRequestHandler):
def do_GET(self): def do_GET(self):
if self.path == '/api/v1/model': if self.path == '/api/v1/model':
@ -91,6 +105,67 @@ class Handler(BaseHTTPRequestHandler):
self.wfile.write(response.encode('utf-8')) self.wfile.write(response.encode('utf-8'))
elif self.path == '/api/v1/model':
self.send_response(200)
self.send_header('Content-Type', 'application/json')
self.end_headers()
# by default return the same as the GET interface
result = shared.model_name
# Actions: info, load, list, unload
action = body.get('action', '')
if action == 'load':
model_name = body['model_name']
args = body.get('args', {})
print('args', args)
for k in args:
setattr(shared.args, k, args[k])
shared.model_name = model_name
unload_model()
model_settings = get_model_specific_settings(shared.model_name)
shared.settings.update(model_settings)
update_model_parameters(model_settings, initial=True)
if shared.settings['mode'] != 'instruct':
shared.settings['instruction_template'] = None
try:
shared.model, shared.tokenizer = load_model(shared.model_name)
if shared.args.lora:
add_lora_to_model(shared.args.lora) # list
except Exception as e:
response = json.dumps({'error': { 'message': repr(e) } })
self.wfile.write(response.encode('utf-8'))
raise e
shared.args.model = shared.model_name
result = get_model_info()
elif action == 'unload':
unload_model()
shared.model_name = None
shared.args.model = None
result = get_model_info()
elif action == 'list':
result = get_available_models()
elif action == 'info':
result = get_model_info()
response = json.dumps({
'result': result,
})
self.wfile.write(response.encode('utf-8'))
elif self.path == '/api/v1/token-count': elif self.path == '/api/v1/token-count':
self.send_response(200) self.send_response(200)
self.send_header('Content-Type', 'application/json') self.send_header('Content-Type', 'application/json')

View File

@ -188,3 +188,9 @@ llama-65b-gptq-3bit:
mode: 'instruct' mode: 'instruct'
instruction_template: 'Vicuna-v1.1' instruction_template: 'Vicuna-v1.1'
truncation_length: 4096 truncation_length: 4096
.*WizardLM-30B-V1.0:
mode: 'instruct'
instruction_template: 'Vicuna-v1.1'
TheBloke_WizardLM-30B-GPTQ:
mode: 'instruct'
instruction_template: 'Vicuna-v1.1'

View File

@ -1,3 +1,4 @@
accelerate==0.20.3
colorama colorama
datasets datasets
einops einops
@ -14,12 +15,11 @@ safetensors==0.3.1
sentencepiece sentencepiece
tqdm tqdm
scipy scipy
git+https://github.com/huggingface/peft@3714aa2fff158fdfa637b2b65952580801d890b2 transformers==4.30.0
git+https://github.com/huggingface/transformers@e45e756d22206ca8fa9fb057c8c3d8fa79bf81c6 git+https://github.com/huggingface/peft@e45529b149c7f91ec1d4d82a5a152ef56c56cb94
git+https://github.com/huggingface/accelerate@0226f750257b3bf2cadc4f189f9eef0c764a0467
bitsandbytes==0.39.0; platform_system != "Windows" bitsandbytes==0.39.0; platform_system != "Windows"
https://github.com/jllllll/bitsandbytes-windows-webui/raw/main/bitsandbytes-0.39.0-py3-none-any.whl; platform_system == "Windows" https://github.com/jllllll/bitsandbytes-windows-webui/raw/main/bitsandbytes-0.39.0-py3-none-any.whl; platform_system == "Windows"
llama-cpp-python==0.1.57; platform_system != "Windows" llama-cpp-python==0.1.57; platform_system != "Windows"
https://github.com/abetlen/llama-cpp-python/releases/download/v0.1.57/llama_cpp_python-0.1.57-cp310-cp310-win_amd64.whl; platform_system == "Windows" https://github.com/abetlen/llama-cpp-python/releases/download/v0.1.57/llama_cpp_python-0.1.57-cp310-cp310-win_amd64.whl; platform_system == "Windows"
https://github.com/PanQiWei/AutoGPTQ/releases/download/v0.2.0/auto_gptq-0.2.0+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows" https://github.com/PanQiWei/AutoGPTQ/releases/download/v0.2.2/auto_gptq-0.2.2+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows"
https://github.com/PanQiWei/AutoGPTQ/releases/download/v0.2.0/auto_gptq-0.2.0+cu117-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" https://github.com/PanQiWei/AutoGPTQ/releases/download/v0.2.2/auto_gptq-0.2.2+cu117-cp310-cp310-linux_x86_64.whl; platform_system == "Linux"

View File

@ -474,21 +474,21 @@ def create_settings_menus(default_preset):
gr.Markdown('Main parameters') gr.Markdown('Main parameters')
with gr.Row(): with gr.Row():
with gr.Column(): with gr.Column():
shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample')
shared.gradio['temperature'] = gr.Slider(0.01, 1.99, value=generate_params['temperature'], step=0.01, label='temperature', info='Primary factor to control randomness of outputs. 0 = deterministic (only the most likely token is used). Higher value = more randomness.') shared.gradio['temperature'] = gr.Slider(0.01, 1.99, value=generate_params['temperature'], step=0.01, label='temperature', info='Primary factor to control randomness of outputs. 0 = deterministic (only the most likely token is used). Higher value = more randomness.')
shared.gradio['top_p'] = gr.Slider(0.0, 1.0, value=generate_params['top_p'], step=0.01, label='top_p', info='If not set to 1, select tokens with probabilities adding up to less than this number. Higher value = higher range of possible random results.') shared.gradio['top_p'] = gr.Slider(0.0, 1.0, value=generate_params['top_p'], step=0.01, label='top_p', info='If not set to 1, select tokens with probabilities adding up to less than this number. Higher value = higher range of possible random results.')
shared.gradio['top_k'] = gr.Slider(0, 200, value=generate_params['top_k'], step=1, label='top_k', info='Similar to top_p, but select instead only the top_k most likely tokens. Higher value = higher range of possible random results.') shared.gradio['top_k'] = gr.Slider(0, 200, value=generate_params['top_k'], step=1, label='top_k', info='Similar to top_p, but select instead only the top_k most likely tokens. Higher value = higher range of possible random results.')
shared.gradio['typical_p'] = gr.Slider(0.0, 1.0, value=generate_params['typical_p'], step=0.01, label='typical_p', info='If not set to 1, select only tokens that are at least this much more likely to appear than random tokens, given the prior text.') shared.gradio['typical_p'] = gr.Slider(0.0, 1.0, value=generate_params['typical_p'], step=0.01, label='typical_p', info='If not set to 1, select only tokens that are at least this much more likely to appear than random tokens, given the prior text.')
shared.gradio['epsilon_cutoff'] = gr.Slider(0, 9, value=generate_params['epsilon_cutoff'], step=0.01, label='epsilon_cutoff', info='In units of 1e-4; a reasonable value is 3. This sets a probability floor below which tokens are excluded from being sampled. Should be used with top_p, top_k, and eta_cutoff set to 0.') shared.gradio['epsilon_cutoff'] = gr.Slider(0, 9, value=generate_params['epsilon_cutoff'], step=0.01, label='epsilon_cutoff', info='In units of 1e-4; a reasonable value is 3. This sets a probability floor below which tokens are excluded from being sampled. Should be used with top_p, top_k, and eta_cutoff set to 0.')
shared.gradio['eta_cutoff'] = gr.Slider(0, 20, value=generate_params['eta_cutoff'], step=0.01, label='eta_cutoff', info='In units of 1e-4; a reasonable value is 3. Should be used with top_p, top_k, and epsilon_cutoff set to 0.') shared.gradio['eta_cutoff'] = gr.Slider(0, 20, value=generate_params['eta_cutoff'], step=0.01, label='eta_cutoff', info='In units of 1e-4; a reasonable value is 3. Should be used with top_p, top_k, and epsilon_cutoff set to 0.')
shared.gradio['tfs'] = gr.Slider(0.0, 1.0, value=generate_params['tfs'], step=0.01, label='tfs')
shared.gradio['top_a'] = gr.Slider(0.0, 1.0, value=generate_params['top_a'], step=0.01, label='top_a')
with gr.Column(): with gr.Column():
shared.gradio['repetition_penalty'] = gr.Slider(1.0, 1.5, value=generate_params['repetition_penalty'], step=0.01, label='repetition_penalty', info='Exponential penalty factor for repeating prior tokens. 1 means no penalty, higher value = less repetition, lower value = more repetition.') shared.gradio['repetition_penalty'] = gr.Slider(1.0, 1.5, value=generate_params['repetition_penalty'], step=0.01, label='repetition_penalty', info='Exponential penalty factor for repeating prior tokens. 1 means no penalty, higher value = less repetition, lower value = more repetition.')
shared.gradio['encoder_repetition_penalty'] = gr.Slider(0.8, 1.5, value=generate_params['encoder_repetition_penalty'], step=0.01, label='encoder_repetition_penalty', info='Also known as the "Hallucinations filter". Used to penalize tokens that are *not* in the prior text. Higher value = more likely to stay in context, lower value = more likely to diverge.') shared.gradio['encoder_repetition_penalty'] = gr.Slider(0.8, 1.5, value=generate_params['encoder_repetition_penalty'], step=0.01, label='encoder_repetition_penalty', info='Also known as the "Hallucinations filter". Used to penalize tokens that are *not* in the prior text. Higher value = more likely to stay in context, lower value = more likely to diverge.')
shared.gradio['no_repeat_ngram_size'] = gr.Slider(0, 20, step=1, value=generate_params['no_repeat_ngram_size'], label='no_repeat_ngram_size', info='If not set to 0, specifies the length of token sets that are completely blocked from repeating at all. Higher values = blocks larger phrases, lower values = blocks words or letters from repeating. Only 0 or high values are a good idea in most cases.') shared.gradio['no_repeat_ngram_size'] = gr.Slider(0, 20, step=1, value=generate_params['no_repeat_ngram_size'], label='no_repeat_ngram_size', info='If not set to 0, specifies the length of token sets that are completely blocked from repeating at all. Higher values = blocks larger phrases, lower values = blocks words or letters from repeating. Only 0 or high values are a good idea in most cases.')
shared.gradio['min_length'] = gr.Slider(0, 2000, step=1, value=generate_params['min_length'], label='min_length', info='Minimum generation length in tokens.') shared.gradio['min_length'] = gr.Slider(0, 2000, step=1, value=generate_params['min_length'], label='min_length', info='Minimum generation length in tokens.')
shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample') shared.gradio['tfs'] = gr.Slider(0.0, 1.0, value=generate_params['tfs'], step=0.01, label='tfs')
shared.gradio['top_a'] = gr.Slider(0.0, 1.0, value=generate_params['top_a'], step=0.01, label='top_a')
with gr.Column(): with gr.Column():
create_chat_settings_menus() create_chat_settings_menus()