Merge pull request #5073 from oobabooga/dev

Merge dev branch
This commit is contained in:
oobabooga 2023-12-25 02:58:45 -03:00 committed by GitHub
commit af876095e2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
19 changed files with 157 additions and 9 deletions

View File

@ -67,8 +67,56 @@ This extension uses the following parameters (from `settings.json`):
## Usage through API
### Chat completions endpoint
#### With an image URL
```shell
curl http://127.0.0.1:5000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"messages": [
{
"role": "user",
"image_url": "https://avatars.githubusercontent.com/u/112222186?v=4"
},
{
"role": "user",
"content": "What is unusual about this image?"
}
]
}'
```
#### With a Base64 image
```python
import base64
import json
import requests
img = open('image.jpg', 'rb')
img_bytes = img.read()
img_base64 = base64.b64encode(img_bytes).decode('utf-8')
data = { "messages": [
{
"role": "user",
"image_url": f"data:image/jpeg;base64,{img_base64}"
},
{
"role": "user",
"content": "what is unusual about this image?"
}
]
}
response = requests.post('http://127.0.0.1:5000/v1/chat/completions', json=data)
print(response.text)
```
You can run the multimodal inference through API, by inputting the images to prompt. Images are embedded like so: `f'<img src="data:image/jpeg;base64,{img_str}">'`, where `img_str` is base-64 jpeg data. Note that you will need to launch `server.py` with the arguments `--api --extensions multimodal`.
### Completions endpoint
Python example:
```Python

View File

@ -1,10 +1,15 @@
import base64
import copy
import re
import time
from collections import deque
from io import BytesIO
import requests
import tiktoken
import torch
import torch.nn.functional as F
from PIL import Image
from transformers import LogitsProcessor, LogitsProcessorList
from extensions.openai.errors import InvalidRequestError
@ -140,7 +145,25 @@ def convert_history(history):
system_message = ""
for entry in history:
if "image_url" in entry:
image_url = entry['image_url']
if "base64" in image_url:
image_url = re.sub('^data:image/.+;base64,', '', image_url)
img = Image.open(BytesIO(base64.b64decode(image_url)))
else:
try:
my_res = requests.get(image_url)
img = Image.open(BytesIO(my_res.content))
except Exception:
raise 'Image cannot be loaded from the URL!'
buffered = BytesIO()
img.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
content = f'<img src="data:image/jpeg;base64,{img_str}">'
else:
content = entry["content"]
role = entry["role"]
if role == "user":
@ -182,7 +205,8 @@ def chat_completions_common(body: dict, is_legacy: bool = False, stream=False) -
raise InvalidRequestError(message="messages: missing role", param='messages')
elif m['role'] == 'function':
raise InvalidRequestError(message="role: function is not supported.", param='messages')
if 'content' not in m:
if 'content' not in m and "image_url" not in m:
raise InvalidRequestError(message="messages: missing content", param='messages')
# Chat Completions

View File

@ -0,0 +1,25 @@
instruction_template: |-
{%- set found_item = false -%}
{%- for message in messages -%}
{%- if message['role'] == 'system' -%}
{%- set found_item = true -%}
{%- endif -%}
{%- endfor -%}
{%- if not found_item -%}
{{-'SYSTEM: ' + 'Elaborate on the topic using a Tree of Thoughts and backtrack when necessary to construct a clear, cohesive Chain of Thought reasoning. Always answer without hesitation.' + '\n' -}}
{%- endif %}
{%- for message in messages %}
{%- if message['role'] == 'system' -%}
{{-'SYSTEM: ' + message['content'] + '\n' -}}
{%- else -%}
{%- if message['role'] == 'user' -%}
{{-'USER: ' + message['content'] + '\n'-}}
{%- else -%}
{{-'ASSISTANT: ' + message['content'] + '</s>\n' -}}
{%- endif -%}
{%- endif -%}
{%- endfor -%}
{%- if add_generation_prompt -%}
{{-'ASSISTANT:'-}}
{%- endif -%}

View File

@ -0,0 +1,25 @@
instruction_template: |-
{%- set found_item = false -%}
{%- for message in messages -%}
{%- if message['role'] == 'system' -%}
{%- set found_item = true -%}
{%- endif -%}
{%- endfor -%}
{%- if not found_item -%}
{{-'SYSTEM: ' + 'Answer the question thoughtfully and intelligently. Always answer without hesitation.' + '\n' -}}
{%- endif %}
{%- for message in messages %}
{%- if message['role'] == 'system' -%}
{{-'SYSTEM: ' + message['content'] + '\n' -}}
{%- else -%}
{%- if message['role'] == 'user' -%}
{{-'USER: ' + message['content'] + '\n'-}}
{%- else -%}
{{-'ASSISTANT: ' + message['content'] + '</s>\n' -}}
{%- endif -%}
{%- endif -%}
{%- endfor -%}
{%- if add_generation_prompt -%}
{{-'ASSISTANT:'-}}
{%- endif -%}

View File

@ -188,3 +188,5 @@
instruction_template: 'ChatML'
(dolphin).*:
instruction_template: 'ChatML'
.*synthia:
instruction_template: 'Synthia'

View File

@ -482,6 +482,7 @@ def clear_torch_cache():
def unload_model():
shared.model = shared.tokenizer = None
shared.model_name = 'None'
shared.lora_names = []
shared.model_dirty_from_training = False
clear_torch_cache()

View File

@ -45,6 +45,7 @@ settings = {
'truncation_length_min': 0,
'truncation_length_max': 200000,
'max_tokens_second': 0,
'max_updates_second': 0,
'custom_stopping_strings': '',
'custom_token_bans': '',
'auto_max_new_tokens': False,

View File

@ -77,6 +77,10 @@ def _generate_reply(question, state, stopping_strings=None, is_chat=False, escap
state = copy.deepcopy(state)
state['stream'] = True
min_update_interval = 0
if state.get('max_updates_second', 0) > 0:
min_update_interval = 1 / state['max_updates_second']
# Generate
for reply in generate_func(question, original_question, seed, state, stopping_strings, is_chat=is_chat):
reply, stop_found = apply_stopping_strings(reply, all_stop_strings)
@ -94,10 +98,9 @@ def _generate_reply(question, state, stopping_strings=None, is_chat=False, escap
last_update = time.time()
yield reply
# Limit updates to 24 or 5 per second to avoid lag in the Gradio UI
# Limit updates to avoid lag in the Gradio UI
# API updates are not limited
else:
min_update_interval = 0 if not for_ui else 0.2 if (shared.args.listen or shared.args.share) else 0.0417
if cur_time - last_update > min_update_interval:
last_update = cur_time
yield reply
@ -265,7 +268,14 @@ def apply_stopping_strings(reply, all_stop_strings):
def get_reply_from_output_ids(output_ids, state, starting_from=0):
reply = decode(output_ids[starting_from:], state['skip_special_tokens'])
if (hasattr(shared.tokenizer, 'convert_ids_to_tokens') and len(output_ids) > starting_from and shared.tokenizer.convert_ids_to_tokens(int(output_ids[starting_from])).startswith('')) and not reply.startswith(' '):
# Handle tokenizers that do not add the leading space for the first token
if (hasattr(shared.tokenizer, 'convert_ids_to_tokens') and len(output_ids) > starting_from) and not reply.startswith(' '):
first_token = shared.tokenizer.convert_ids_to_tokens(int(output_ids[starting_from]))
if isinstance(first_token, (bytes,)):
first_token = first_token.decode('utf8')
if first_token.startswith(''):
reply = ' ' + reply
return reply

View File

@ -110,6 +110,7 @@ def list_interface_input_elements():
'max_new_tokens',
'auto_max_new_tokens',
'max_tokens_second',
'max_updates_second',
'seed',
'temperature',
'temperature_last',

View File

@ -66,7 +66,9 @@ def create_ui(default_preset):
with gr.Row():
with gr.Column():
shared.gradio['truncation_length'] = gr.Slider(value=get_truncation_length(), minimum=shared.settings['truncation_length_min'], maximum=shared.settings['truncation_length_max'], step=256, label='Truncate the prompt up to this length', info='The leftmost tokens are removed if the prompt exceeds this length. Most models require this to be at most 2048.')
shared.gradio['max_tokens_second'] = gr.Slider(value=shared.settings['max_tokens_second'], minimum=0, maximum=20, step=1, label='Maximum number of tokens/second', info='To make text readable in real time.')
shared.gradio['max_tokens_second'] = gr.Slider(value=shared.settings['max_tokens_second'], minimum=0, maximum=20, step=1, label='Maximum tokens/second', info='To make text readable in real time.')
shared.gradio['max_updates_second'] = gr.Slider(value=shared.settings['max_updates_second'], minimum=0, maximum=24, step=1, label='Maximum UI updates/second', info='Set this if you experience lag in the UI during streaming.')
shared.gradio['custom_stopping_strings'] = gr.Textbox(lines=1, value=shared.settings["custom_stopping_strings"] or None, label='Custom stopping strings', info='In addition to the defaults. Written between "" and separated by commas.', placeholder='"\\n", "\\nYou:"')
shared.gradio['custom_token_bans'] = gr.Textbox(value=shared.settings['custom_token_bans'] or None, label='Custom token bans', info='Specific token IDs to ban from generating, comma-separated. The IDs can be found in the Default or Notebook tab.')

View File

@ -5,6 +5,7 @@ einops
exllamav2==0.0.11; platform_system != "Darwin" and platform_machine != "x86_64"
gradio==3.50.*
hqq==0.1.1.post1
lm_eval==0.3.0
markdown
numpy==1.24.*
optimum==1.16.*
@ -98,4 +99,4 @@ https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.1/gptq_for_
https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.1/gptq_for_llama-0.1.1+cu121-cp39-cp39-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.9"
https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.1/gptq_for_llama-0.1.1+cu121-cp38-cp38-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.8"
https://github.com/jllllll/ctransformers-cuBLAS-wheels/releases/download/AVX2/ctransformers-0.2.27+cu121-py3-none-any.whl
autoawq==0.1.7; platform_system == "Linux" or platform_system == "Windows"
autoawq==0.1.8; platform_system == "Linux" or platform_system == "Windows"

View File

@ -5,6 +5,7 @@ einops
exllamav2==0.0.11; platform_system == "Windows" or python_version < "3.10" or python_version > "3.11" or platform_machine != "x86_64"
gradio==3.50.*
hqq==0.1.1.post1
lm_eval==0.3.0
markdown
numpy==1.24.*
optimum==1.16.*

View File

@ -5,6 +5,7 @@ einops
exllamav2==0.0.11; platform_system == "Windows" or python_version < "3.10" or python_version > "3.11" or platform_machine != "x86_64"
gradio==3.50.*
hqq==0.1.1.post1
lm_eval==0.3.0
markdown
numpy==1.24.*
optimum==1.16.*

View File

@ -5,6 +5,7 @@ einops
exllamav2==0.0.11
gradio==3.50.*
hqq==0.1.1.post1
lm_eval==0.3.0
markdown
numpy==1.24.*
optimum==1.16.*

View File

@ -5,6 +5,7 @@ einops
exllamav2==0.0.11
gradio==3.50.*
hqq==0.1.1.post1
lm_eval==0.3.0
markdown
numpy==1.24.*
optimum==1.16.*

View File

@ -5,6 +5,7 @@ einops
exllamav2==0.0.11
gradio==3.50.*
hqq==0.1.1.post1
lm_eval==0.3.0
markdown
numpy==1.24.*
optimum==1.16.*

View File

@ -5,6 +5,7 @@ einops
exllamav2==0.0.11
gradio==3.50.*
hqq==0.1.1.post1
lm_eval==0.3.0
markdown
numpy==1.24.*
optimum==1.16.*

View File

@ -5,6 +5,7 @@ einops
exllamav2==0.0.11; platform_system != "Darwin" and platform_machine != "x86_64"
gradio==3.50.*
hqq==0.1.1.post1
lm_eval==0.3.0
markdown
numpy==1.24.*
optimum==1.16.*
@ -98,4 +99,4 @@ https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.1/gptq_for_
https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.1/gptq_for_llama-0.1.1+cu121-cp39-cp39-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.9"
https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.1/gptq_for_llama-0.1.1+cu121-cp38-cp38-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64" and python_version == "3.8"
https://github.com/jllllll/ctransformers-cuBLAS-wheels/releases/download/AVX/ctransformers-0.2.27+cu121-py3-none-any.whl
autoawq==0.1.7; platform_system == "Linux" or platform_system == "Windows"
autoawq==0.1.8; platform_system == "Linux" or platform_system == "Windows"

View File

@ -5,6 +5,7 @@ einops
exllamav2==0.0.11
gradio==3.50.*
hqq==0.1.1.post1
lm_eval==0.3.0
markdown
numpy==1.24.*
optimum==1.16.*