mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2025-01-26 12:22:08 +01:00
Remove "eval" statements from text generation functions
This commit is contained in:
parent
5c0522307f
commit
afc5339510
@ -122,7 +122,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
||||
input_ids = encode(question, max_new_tokens)
|
||||
original_input_ids = input_ids
|
||||
output = input_ids[0]
|
||||
cuda = "" if (shared.args.cpu or shared.args.deepspeed or shared.args.flexgen) else ".cuda()"
|
||||
cuda = not any((shared.args.cpu, shared.args.deepspeed, shared.args.flexgen))
|
||||
eos_token_ids = [shared.tokenizer.eos_token_id] if shared.tokenizer.eos_token_id is not None else []
|
||||
if eos_token is not None:
|
||||
eos_token_ids.append(int(encode(eos_token)[0][-1]))
|
||||
@ -132,45 +132,48 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
||||
t = encode(stopping_string, 0, add_special_tokens=False)
|
||||
stopping_criteria_list.append(_SentinelTokenStoppingCriteria(sentinel_token_ids=t, starting_idx=len(input_ids[0])))
|
||||
|
||||
generate_params = {}
|
||||
if not shared.args.flexgen:
|
||||
generate_params = [
|
||||
f"max_new_tokens=max_new_tokens",
|
||||
f"eos_token_id={eos_token_ids}",
|
||||
f"stopping_criteria=stopping_criteria_list",
|
||||
f"do_sample={do_sample}",
|
||||
f"temperature={temperature}",
|
||||
f"top_p={top_p}",
|
||||
f"typical_p={typical_p}",
|
||||
f"repetition_penalty={repetition_penalty}",
|
||||
f"top_k={top_k}",
|
||||
f"min_length={min_length if shared.args.no_stream else 0}",
|
||||
f"no_repeat_ngram_size={no_repeat_ngram_size}",
|
||||
f"num_beams={num_beams}",
|
||||
f"penalty_alpha={penalty_alpha}",
|
||||
f"length_penalty={length_penalty}",
|
||||
f"early_stopping={early_stopping}",
|
||||
]
|
||||
generate_params.update({
|
||||
"max_new_tokens": max_new_tokens,
|
||||
"eos_token_id": eos_token_ids,
|
||||
"stopping_criteria": stopping_criteria_list,
|
||||
"do_sample": do_sample,
|
||||
"temperature": temperature,
|
||||
"top_p": top_p,
|
||||
"typical_p": typical_p,
|
||||
"repetition_penalty": repetition_penalty,
|
||||
"top_k": top_k,
|
||||
"min_length": min_length if shared.args.no_stream else 0,
|
||||
"no_repeat_ngram_size": no_repeat_ngram_size,
|
||||
"num_beams": num_beams,
|
||||
"penalty_alpha": penalty_alpha,
|
||||
"length_penalty": length_penalty,
|
||||
"early_stopping": early_stopping,
|
||||
})
|
||||
else:
|
||||
generate_params = [
|
||||
f"max_new_tokens={max_new_tokens if shared.args.no_stream else 8}",
|
||||
f"do_sample={do_sample}",
|
||||
f"temperature={temperature}",
|
||||
f"stop={eos_token_ids[-1]}",
|
||||
]
|
||||
generate_params.update({
|
||||
"max_new_tokens": max_new_tokens if shared.args.no_stream else 8,
|
||||
"do_sample": do_sample,
|
||||
"temperature": temperature,
|
||||
"stop": eos_token_ids[-1],
|
||||
})
|
||||
if shared.args.deepspeed:
|
||||
generate_params.append("synced_gpus=True")
|
||||
generate_params.update({"synced_gpus": True})
|
||||
if shared.soft_prompt:
|
||||
inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
|
||||
generate_params.insert(0, "inputs_embeds=inputs_embeds")
|
||||
generate_params.insert(0, "inputs=filler_input_ids")
|
||||
generate_params.update({"inputs_embeds": inputs_embeds})
|
||||
generate_params.update({"inputs": filler_input_ids})
|
||||
else:
|
||||
generate_params.insert(0, "inputs=input_ids")
|
||||
generate_params.update({"inputs": input_ids})
|
||||
|
||||
try:
|
||||
# Generate the entire reply at once.
|
||||
if shared.args.no_stream:
|
||||
with torch.no_grad():
|
||||
output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0]
|
||||
output = shared.model.generate(**generate_params)[0]
|
||||
if cuda:
|
||||
output = output.cuda()
|
||||
if shared.soft_prompt:
|
||||
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
|
||||
|
||||
@ -194,7 +197,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
||||
return Iteratorize(generate_with_callback, kwargs, callback=None)
|
||||
|
||||
yield formatted_outputs(original_question, shared.model_name)
|
||||
with eval(f"generate_with_streaming({', '.join(generate_params)})") as generator:
|
||||
with generate_with_streaming(**generate_params) as generator:
|
||||
for output in generator:
|
||||
if shared.soft_prompt:
|
||||
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
|
||||
@ -214,7 +217,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
||||
for i in range(max_new_tokens//8+1):
|
||||
clear_torch_cache()
|
||||
with torch.no_grad():
|
||||
output = eval(f"shared.model.generate({', '.join(generate_params)})")[0]
|
||||
output = shared.model.generate(**generate_params)[0]
|
||||
if shared.soft_prompt:
|
||||
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
|
||||
reply = decode(output)
|
||||
|
Loading…
Reference in New Issue
Block a user