mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-29 19:09:32 +01:00
Remove T5 support (it sucks)
This commit is contained in:
parent
89fd0180b7
commit
b2a2ddcb15
13
server.py
13
server.py
@ -8,8 +8,7 @@ from pathlib import Path
|
|||||||
import gradio as gr
|
import gradio as gr
|
||||||
import transformers
|
import transformers
|
||||||
from html_generator import *
|
from html_generator import *
|
||||||
from transformers import AutoTokenizer, T5Tokenizer
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||||
from transformers import AutoModelForCausalLM, T5ForConditionalGeneration
|
|
||||||
|
|
||||||
|
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
@ -37,8 +36,6 @@ def load_model(model_name):
|
|||||||
model = torch.load(Path(f"torch-dumps/{model_name}.pt"))
|
model = torch.load(Path(f"torch-dumps/{model_name}.pt"))
|
||||||
elif model_name.lower().startswith(('gpt-neo', 'opt-', 'galactica')) and any(size in model_name.lower() for size in ('13b', '20b', '30b')):
|
elif model_name.lower().startswith(('gpt-neo', 'opt-', 'galactica')) and any(size in model_name.lower() for size in ('13b', '20b', '30b')):
|
||||||
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), device_map='auto', load_in_8bit=True)
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), device_map='auto', load_in_8bit=True)
|
||||||
elif model_name in ['flan-t5', 't5-large']:
|
|
||||||
model = T5ForConditionalGeneration.from_pretrained(Path(f"models/{model_name}")).cuda()
|
|
||||||
else:
|
else:
|
||||||
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda()
|
||||||
|
|
||||||
@ -46,11 +43,7 @@ def load_model(model_name):
|
|||||||
else:
|
else:
|
||||||
settings = ["low_cpu_mem_usage=True"]
|
settings = ["low_cpu_mem_usage=True"]
|
||||||
cuda = ""
|
cuda = ""
|
||||||
|
command = "AutoModelForCausalLM.from_pretrained"
|
||||||
if model_name in ['flan-t5', 't5-large']:
|
|
||||||
command = f"T5ForConditionalGeneration.from_pretrained"
|
|
||||||
else:
|
|
||||||
command = "AutoModelForCausalLM.from_pretrained"
|
|
||||||
|
|
||||||
if args.cpu:
|
if args.cpu:
|
||||||
settings.append("torch_dtype=torch.float32")
|
settings.append("torch_dtype=torch.float32")
|
||||||
@ -72,8 +65,6 @@ def load_model(model_name):
|
|||||||
# Loading the tokenizer
|
# Loading the tokenizer
|
||||||
if model_name.lower().startswith('gpt4chan') and Path(f"models/gpt-j-6B/").exists():
|
if model_name.lower().startswith('gpt4chan') and Path(f"models/gpt-j-6B/").exists():
|
||||||
tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
|
tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
|
||||||
elif model_name in ['flan-t5', 't5-large']:
|
|
||||||
tokenizer = T5Tokenizer.from_pretrained(Path(f"models/{model_name}/"))
|
|
||||||
else:
|
else:
|
||||||
tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{model_name}/"))
|
tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{model_name}/"))
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user