mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-12-25 05:48:55 +01:00
Add FlexGen support #92 (experimental)
This commit is contained in:
parent
e52b697d5a
commit
b83f51ee04
63
convert-to-flexgen.py
Normal file
63
convert-to-flexgen.py
Normal file
@ -0,0 +1,63 @@
|
|||||||
|
'''
|
||||||
|
|
||||||
|
Converts a transformers model to a format compatible with flexgen.
|
||||||
|
|
||||||
|
'''
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import numpy as np
|
||||||
|
from pathlib import Path
|
||||||
|
from sys import argv
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from tqdm import tqdm
|
||||||
|
from transformers import AutoModelForCausalLM
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog,max_help_position=54))
|
||||||
|
parser.add_argument('MODEL', type=str, default=None, nargs='?', help="Path to the input model.")
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
def disable_torch_init():
|
||||||
|
"""
|
||||||
|
Disable the redundant torch default initialization to accelerate model creation.
|
||||||
|
"""
|
||||||
|
import torch
|
||||||
|
global torch_linear_init_backup
|
||||||
|
global torch_layer_norm_init_backup
|
||||||
|
|
||||||
|
torch_linear_init_backup = torch.nn.Linear.reset_parameters
|
||||||
|
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
|
||||||
|
|
||||||
|
torch_layer_norm_init_backup = torch.nn.LayerNorm.reset_parameters
|
||||||
|
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
|
||||||
|
|
||||||
|
|
||||||
|
def restore_torch_init():
|
||||||
|
"""Rollback the change made by disable_torch_init."""
|
||||||
|
import torch
|
||||||
|
setattr(torch.nn.Linear, "reset_parameters", torch_linear_init_backup)
|
||||||
|
setattr(torch.nn.LayerNorm, "reset_parameters", torch_layer_norm_init_backup)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
path = Path(args.MODEL)
|
||||||
|
model_name = path.name
|
||||||
|
|
||||||
|
print(f"Loading {model_name}...")
|
||||||
|
disable_torch_init()
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.float16, _fast_init=True)
|
||||||
|
restore_torch_init()
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(path)
|
||||||
|
|
||||||
|
out_folder = Path(f"models/{model_name}-np")
|
||||||
|
if not Path(out_folder).exists():
|
||||||
|
os.mkdir(out_folder)
|
||||||
|
|
||||||
|
print(f"Saving the converted model to {out_folder}...")
|
||||||
|
for name, param in tqdm(list(model.model.named_parameters())):
|
||||||
|
name = name.replace("decoder.final_layer_norm", "decoder.layer_norm")
|
||||||
|
param_path = os.path.join(out_folder, name)
|
||||||
|
with open(param_path, "wb") as f:
|
||||||
|
np.save(f, param.cpu().detach().numpy())
|
80
server.py
80
server.py
@ -45,6 +45,7 @@ parser.add_argument('--disk', action='store_true', help='If the model is too lar
|
|||||||
parser.add_argument('--disk-cache-dir', type=str, help='Directory to save the disk cache to. Defaults to "cache/".')
|
parser.add_argument('--disk-cache-dir', type=str, help='Directory to save the disk cache to. Defaults to "cache/".')
|
||||||
parser.add_argument('--gpu-memory', type=int, help='Maximum GPU memory in GiB to allocate. This is useful if you get out of memory errors while trying to generate text. Must be an integer number.')
|
parser.add_argument('--gpu-memory', type=int, help='Maximum GPU memory in GiB to allocate. This is useful if you get out of memory errors while trying to generate text. Must be an integer number.')
|
||||||
parser.add_argument('--cpu-memory', type=int, help='Maximum CPU memory in GiB to allocate for offloaded weights. Must be an integer number. Defaults to 99.')
|
parser.add_argument('--cpu-memory', type=int, help='Maximum CPU memory in GiB to allocate for offloaded weights. Must be an integer number. Defaults to 99.')
|
||||||
|
parser.add_argument('--flexgen', action='store_true', help='Enable the use of FlexGen offloading.')
|
||||||
parser.add_argument('--deepspeed', action='store_true', help='Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration.')
|
parser.add_argument('--deepspeed', action='store_true', help='Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration.')
|
||||||
parser.add_argument('--nvme-offload-dir', type=str, help='DeepSpeed: Directory to use for ZeRO-3 NVME offloading.')
|
parser.add_argument('--nvme-offload-dir', type=str, help='DeepSpeed: Directory to use for ZeRO-3 NVME offloading.')
|
||||||
parser.add_argument('--local_rank', type=int, default=0, help='DeepSpeed: Optional argument for distributed setups.')
|
parser.add_argument('--local_rank', type=int, default=0, help='DeepSpeed: Optional argument for distributed setups.')
|
||||||
@ -86,6 +87,9 @@ if args.settings is not None and Path(args.settings).exists():
|
|||||||
for item in new_settings:
|
for item in new_settings:
|
||||||
settings[item] = new_settings[item]
|
settings[item] = new_settings[item]
|
||||||
|
|
||||||
|
if args.flexgen:
|
||||||
|
from flexgen.flex_opt import (Policy, OptLM, TorchDevice, TorchDisk, TorchMixedDevice, CompressionConfig, Env, Task, get_opt_config)
|
||||||
|
|
||||||
if args.deepspeed:
|
if args.deepspeed:
|
||||||
import deepspeed
|
import deepspeed
|
||||||
from transformers.deepspeed import HfDeepSpeedConfig, is_deepspeed_zero3_enabled
|
from transformers.deepspeed import HfDeepSpeedConfig, is_deepspeed_zero3_enabled
|
||||||
@ -107,12 +111,39 @@ def load_model(model_name):
|
|||||||
t0 = time.time()
|
t0 = time.time()
|
||||||
|
|
||||||
# Default settings
|
# Default settings
|
||||||
if not (args.cpu or args.load_in_8bit or args.auto_devices or args.disk or args.gpu_memory is not None or args.cpu_memory is not None or args.deepspeed):
|
if not (args.cpu or args.load_in_8bit or args.auto_devices or args.disk or args.gpu_memory is not None or args.cpu_memory is not None or args.deepspeed or args.flexgen):
|
||||||
if any(size in model_name.lower() for size in ('13b', '20b', '30b')):
|
if any(size in model_name.lower() for size in ('13b', '20b', '30b')):
|
||||||
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), device_map='auto', load_in_8bit=True)
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), device_map='auto', load_in_8bit=True)
|
||||||
else:
|
else:
|
||||||
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if args.bf16 else torch.float16).cuda()
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if args.bf16 else torch.float16).cuda()
|
||||||
|
|
||||||
|
# FlexGen
|
||||||
|
elif args.flexgen:
|
||||||
|
gpu = TorchDevice("cuda:0")
|
||||||
|
cpu = TorchDevice("cpu")
|
||||||
|
disk = TorchDisk("cache")
|
||||||
|
env = Env(gpu=gpu, cpu=cpu, disk=disk, mixed=TorchMixedDevice([gpu, cpu, disk]))
|
||||||
|
|
||||||
|
# Offloading policy
|
||||||
|
policy = Policy(1, 1,
|
||||||
|
100, 0,
|
||||||
|
100, 0,
|
||||||
|
100, 0,
|
||||||
|
overlap=True, sep_layer=True, pin_weight=True,
|
||||||
|
cpu_cache_compute=False, attn_sparsity=1.0,
|
||||||
|
compress_weight=False,
|
||||||
|
comp_weight_config=CompressionConfig(
|
||||||
|
num_bits=4, group_size=64,
|
||||||
|
group_dim=0, symmetric=False),
|
||||||
|
compress_cache=False,
|
||||||
|
comp_cache_config=CompressionConfig(
|
||||||
|
num_bits=4, group_size=64,
|
||||||
|
group_dim=2, symmetric=False))
|
||||||
|
|
||||||
|
opt_config = get_opt_config(f"facebook/{model_name}")
|
||||||
|
model = OptLM(opt_config, env, "models", policy)
|
||||||
|
model.init_all_weights()
|
||||||
|
|
||||||
# DeepSpeed ZeRO-3
|
# DeepSpeed ZeRO-3
|
||||||
elif args.deepspeed:
|
elif args.deepspeed:
|
||||||
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), torch_dtype=torch.bfloat16 if args.bf16 else torch.float16)
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), torch_dtype=torch.bfloat16 if args.bf16 else torch.float16)
|
||||||
@ -273,7 +304,7 @@ def get_max_prompt_length(tokens):
|
|||||||
|
|
||||||
def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
|
def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
|
||||||
input_ids = tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=get_max_prompt_length(tokens_to_generate), add_special_tokens=add_special_tokens)
|
input_ids = tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=get_max_prompt_length(tokens_to_generate), add_special_tokens=add_special_tokens)
|
||||||
if args.cpu:
|
if args.cpu or args.flexgen:
|
||||||
return input_ids
|
return input_ids
|
||||||
elif args.deepspeed:
|
elif args.deepspeed:
|
||||||
return input_ids.to(device=local_rank)
|
return input_ids.to(device=local_rank)
|
||||||
@ -315,7 +346,7 @@ def generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top
|
|||||||
print(f"\n\n{question}\n--------------------\n")
|
print(f"\n\n{question}\n--------------------\n")
|
||||||
|
|
||||||
input_ids = encode(question, tokens)
|
input_ids = encode(question, tokens)
|
||||||
cuda = "" if (args.cpu or args.deepspeed) else ".cuda()"
|
cuda = "" if (args.cpu or args.deepspeed or args.flexgen) else ".cuda()"
|
||||||
n = tokenizer.eos_token_id if eos_token is None else tokenizer.encode(eos_token, return_tensors='pt')[0][-1]
|
n = tokenizer.eos_token_id if eos_token is None else tokenizer.encode(eos_token, return_tensors='pt')[0][-1]
|
||||||
if stopping_string is not None:
|
if stopping_string is not None:
|
||||||
# The stopping_criteria code below was copied from
|
# The stopping_criteria code below was copied from
|
||||||
@ -330,22 +361,28 @@ def generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top
|
|||||||
else:
|
else:
|
||||||
stopping_criteria_list = None
|
stopping_criteria_list = None
|
||||||
|
|
||||||
generate_params = [
|
if not args.flexgen:
|
||||||
f"eos_token_id={n}",
|
generate_params = [
|
||||||
f"stopping_criteria=stopping_criteria_list",
|
f"eos_token_id={n}",
|
||||||
f"do_sample={do_sample}",
|
f"stopping_criteria=stopping_criteria_list",
|
||||||
f"temperature={temperature}",
|
f"do_sample={do_sample}",
|
||||||
f"top_p={top_p}",
|
f"temperature={temperature}",
|
||||||
f"typical_p={typical_p}",
|
f"top_p={top_p}",
|
||||||
f"repetition_penalty={repetition_penalty}",
|
f"typical_p={typical_p}",
|
||||||
f"top_k={top_k}",
|
f"repetition_penalty={repetition_penalty}",
|
||||||
f"min_length={min_length if args.no_stream else 0}",
|
f"top_k={top_k}",
|
||||||
f"no_repeat_ngram_size={no_repeat_ngram_size}",
|
f"min_length={min_length if args.no_stream else 0}",
|
||||||
f"num_beams={num_beams}",
|
f"no_repeat_ngram_size={no_repeat_ngram_size}",
|
||||||
f"penalty_alpha={penalty_alpha}",
|
f"num_beams={num_beams}",
|
||||||
f"length_penalty={length_penalty}",
|
f"penalty_alpha={penalty_alpha}",
|
||||||
f"early_stopping={early_stopping}",
|
f"length_penalty={length_penalty}",
|
||||||
]
|
f"early_stopping={early_stopping}",
|
||||||
|
]
|
||||||
|
else:
|
||||||
|
generate_params = [
|
||||||
|
f"do_sample={do_sample}",
|
||||||
|
f"temperature={temperature}",
|
||||||
|
]
|
||||||
|
|
||||||
if args.deepspeed:
|
if args.deepspeed:
|
||||||
generate_params.append("synced_gpus=True")
|
generate_params.append("synced_gpus=True")
|
||||||
@ -391,7 +428,10 @@ def generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top
|
|||||||
reply = original_question + apply_extensions(reply[len(question):], "output")
|
reply = original_question + apply_extensions(reply[len(question):], "output")
|
||||||
yield formatted_outputs(reply, model_name)
|
yield formatted_outputs(reply, model_name)
|
||||||
|
|
||||||
input_ids = torch.reshape(output, (1, output.shape[0]))
|
if not args.flexgen:
|
||||||
|
input_ids = torch.reshape(output, (1, output.shape[0]))
|
||||||
|
else:
|
||||||
|
input_ids = np.reshape(output, (1, output.shape[0]))
|
||||||
if soft_prompt:
|
if soft_prompt:
|
||||||
inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
|
inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user