mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-24 08:56:52 +01:00
Don't import PEFT unless necessary
This commit is contained in:
parent
c5b40eb555
commit
bba5b36d33
@ -1,7 +1,6 @@
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from peft import PeftModel
|
|
||||||
from transformers import is_torch_xpu_available
|
from transformers import is_torch_xpu_available
|
||||||
|
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
@ -85,6 +84,9 @@ def add_lora_autogptq(lora_names):
|
|||||||
|
|
||||||
|
|
||||||
def add_lora_transformers(lora_names):
|
def add_lora_transformers(lora_names):
|
||||||
|
|
||||||
|
from peft import PeftModel
|
||||||
|
|
||||||
prior_set = set(shared.lora_names)
|
prior_set = set(shared.lora_names)
|
||||||
added_set = set(lora_names) - prior_set
|
added_set = set(lora_names) - prior_set
|
||||||
removed_set = prior_set - set(lora_names)
|
removed_set = prior_set - set(lora_names)
|
||||||
|
@ -18,14 +18,6 @@ import gradio as gr
|
|||||||
import torch
|
import torch
|
||||||
import transformers
|
import transformers
|
||||||
from datasets import Dataset, load_dataset
|
from datasets import Dataset, load_dataset
|
||||||
from peft import (
|
|
||||||
LoraConfig,
|
|
||||||
get_peft_model,
|
|
||||||
prepare_model_for_kbit_training,
|
|
||||||
set_peft_model_state_dict
|
|
||||||
)
|
|
||||||
from peft.utils.other import \
|
|
||||||
TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING as model_to_lora_modules
|
|
||||||
from transformers import is_torch_xpu_available
|
from transformers import is_torch_xpu_available
|
||||||
from transformers.models.auto.modeling_auto import (
|
from transformers.models.auto.modeling_auto import (
|
||||||
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
|
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
|
||||||
@ -292,6 +284,16 @@ def calc_trainable_parameters(model):
|
|||||||
|
|
||||||
def do_train(lora_name: str, always_override: bool, q_proj_en: bool, v_proj_en: bool, k_proj_en: bool, o_proj_en: bool, gate_proj_en: bool, down_proj_en: bool, up_proj_en: bool, save_steps: int, micro_batch_size: int, batch_size: int, epochs: int, learning_rate: str, lr_scheduler_type: str, lora_rank: int, lora_alpha: int, lora_dropout: float, cutoff_len: int, dataset: str, eval_dataset: str, format: str, eval_steps: int, raw_text_file: str, overlap_len: int, newline_favor_len: int, higher_rank_limit: bool, warmup_steps: int, optimizer: str, hard_cut_string: str, train_only_after: str, stop_at_loss: float, add_eos_token: bool, min_chars: int, report_to: str):
|
def do_train(lora_name: str, always_override: bool, q_proj_en: bool, v_proj_en: bool, k_proj_en: bool, o_proj_en: bool, gate_proj_en: bool, down_proj_en: bool, up_proj_en: bool, save_steps: int, micro_batch_size: int, batch_size: int, epochs: int, learning_rate: str, lr_scheduler_type: str, lora_rank: int, lora_alpha: int, lora_dropout: float, cutoff_len: int, dataset: str, eval_dataset: str, format: str, eval_steps: int, raw_text_file: str, overlap_len: int, newline_favor_len: int, higher_rank_limit: bool, warmup_steps: int, optimizer: str, hard_cut_string: str, train_only_after: str, stop_at_loss: float, add_eos_token: bool, min_chars: int, report_to: str):
|
||||||
|
|
||||||
|
from peft import (
|
||||||
|
LoraConfig,
|
||||||
|
get_peft_model,
|
||||||
|
prepare_model_for_kbit_training,
|
||||||
|
set_peft_model_state_dict
|
||||||
|
)
|
||||||
|
from peft.utils.other import \
|
||||||
|
TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING as \
|
||||||
|
model_to_lora_modules
|
||||||
|
|
||||||
global WANT_INTERRUPT
|
global WANT_INTERRUPT
|
||||||
WANT_INTERRUPT = False
|
WANT_INTERRUPT = False
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user