mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-22 16:17:57 +01:00
Add LLaMA 8-bit support
This commit is contained in:
parent
c93f1fa99b
commit
bd8aac8fa4
125
modules/LLaMA_8bit.py
Normal file
125
modules/LLaMA_8bit.py
Normal file
@ -0,0 +1,125 @@
|
|||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
|
||||||
|
|
||||||
|
from typing import Tuple
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import torch
|
||||||
|
import fire
|
||||||
|
import time
|
||||||
|
import json
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from fairscale.nn.model_parallel.initialize import initialize_model_parallel
|
||||||
|
|
||||||
|
from repositories.llama_int8.llama import ModelArgs, Transformer, Tokenizer, LLaMA
|
||||||
|
|
||||||
|
|
||||||
|
def setup_model_parallel() -> Tuple[int, int]:
|
||||||
|
local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
||||||
|
world_size = int(os.environ.get("WORLD_SIZE", -1))
|
||||||
|
|
||||||
|
torch.distributed.init_process_group("nccl")
|
||||||
|
initialize_model_parallel(world_size)
|
||||||
|
torch.cuda.set_device(local_rank)
|
||||||
|
|
||||||
|
# seed must be the same in all processes
|
||||||
|
torch.manual_seed(1)
|
||||||
|
return local_rank, world_size
|
||||||
|
|
||||||
|
|
||||||
|
def load(
|
||||||
|
ckpt_dir: str,
|
||||||
|
tokenizer_path: str,
|
||||||
|
max_seq_len: int,
|
||||||
|
max_batch_size: int,
|
||||||
|
) -> LLaMA:
|
||||||
|
start_time = time.time()
|
||||||
|
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
|
||||||
|
|
||||||
|
with open(Path(ckpt_dir) / "params.json", "r") as f:
|
||||||
|
params = json.loads(f.read())
|
||||||
|
|
||||||
|
model_args: ModelArgs = ModelArgs(
|
||||||
|
max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params
|
||||||
|
)
|
||||||
|
tokenizer = Tokenizer(model_path=tokenizer_path)
|
||||||
|
model_args.vocab_size = tokenizer.n_words
|
||||||
|
# torch.set_default_tensor_type(torch.cuda.HalfTensor)
|
||||||
|
torch.set_default_tensor_type(torch.HalfTensor)
|
||||||
|
print("Creating transformer")
|
||||||
|
model = Transformer(model_args)
|
||||||
|
print("Transformer created")
|
||||||
|
|
||||||
|
key_to_dim = {
|
||||||
|
"w1": 0,
|
||||||
|
"w2": -1,
|
||||||
|
"w3": 0,
|
||||||
|
"wo": -1,
|
||||||
|
"wq": 0,
|
||||||
|
"wk": 0,
|
||||||
|
"wv": 0,
|
||||||
|
"output": 0,
|
||||||
|
"tok_embeddings": -1,
|
||||||
|
"ffn_norm": None,
|
||||||
|
"attention_norm": None,
|
||||||
|
"norm": None,
|
||||||
|
"rope": None,
|
||||||
|
}
|
||||||
|
|
||||||
|
# ?
|
||||||
|
torch.set_default_tensor_type(torch.FloatTensor)
|
||||||
|
|
||||||
|
# load the state dict incrementally, to avoid memory problems
|
||||||
|
for i, ckpt in enumerate(checkpoints):
|
||||||
|
print(f"Loading checkpoint {i}")
|
||||||
|
checkpoint = torch.load(ckpt, map_location="cpu")
|
||||||
|
for parameter_name, parameter in model.named_parameters():
|
||||||
|
short_name = parameter_name.split(".")[-2]
|
||||||
|
if key_to_dim[short_name] is None and i == 0:
|
||||||
|
parameter.data = checkpoint[parameter_name]
|
||||||
|
elif key_to_dim[short_name] == 0:
|
||||||
|
size = checkpoint[parameter_name].size(0)
|
||||||
|
parameter.data[size * i : size * (i + 1), :] = checkpoint[
|
||||||
|
parameter_name
|
||||||
|
]
|
||||||
|
elif key_to_dim[short_name] == -1:
|
||||||
|
size = checkpoint[parameter_name].size(-1)
|
||||||
|
parameter.data[:, size * i : size * (i + 1)] = checkpoint[
|
||||||
|
parameter_name
|
||||||
|
]
|
||||||
|
del checkpoint
|
||||||
|
|
||||||
|
# model.load_state_dict(checkpoint, strict=False)
|
||||||
|
model.quantize()
|
||||||
|
|
||||||
|
generator = LLaMA(model, tokenizer)
|
||||||
|
print(f"Loaded in {time.time() - start_time:.2f} seconds")
|
||||||
|
return generator
|
||||||
|
|
||||||
|
|
||||||
|
class LLaMAModel_8bit:
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def from_pretrained(self, path, max_seq_len=2048, max_batch_size=1):
|
||||||
|
tokenizer_path = path / "tokenizer.model"
|
||||||
|
path = os.path.abspath(path)
|
||||||
|
tokenizer_path = os.path.abspath(tokenizer_path)
|
||||||
|
|
||||||
|
generator = load(path, tokenizer_path, max_seq_len, max_batch_size)
|
||||||
|
|
||||||
|
result = self()
|
||||||
|
result.pipeline = generator
|
||||||
|
return result
|
||||||
|
|
||||||
|
def generate(self, prompt, token_count=512, temperature=0.8, top_p=0.95):
|
||||||
|
|
||||||
|
results = self.pipeline.generate(
|
||||||
|
[prompt], max_gen_len=token_count, temperature=temperature, top_p=top_p
|
||||||
|
)
|
||||||
|
|
||||||
|
return results[0]
|
||||||
|
|
@ -88,6 +88,14 @@ def load_model(model_name):
|
|||||||
|
|
||||||
# LLaMA model (not on HuggingFace)
|
# LLaMA model (not on HuggingFace)
|
||||||
elif shared.is_LLaMA:
|
elif shared.is_LLaMA:
|
||||||
|
if shared.args.load_in_8bit:
|
||||||
|
import modules.LLaMA_8bit
|
||||||
|
from modules.LLaMA_8bit import LLaMAModel_8bit
|
||||||
|
|
||||||
|
model = LLaMAModel_8bit.from_pretrained(Path(f'models/{model_name}'))
|
||||||
|
|
||||||
|
return model, None
|
||||||
|
else:
|
||||||
import modules.LLaMA
|
import modules.LLaMA
|
||||||
from modules.LLaMA import LLaMAModel
|
from modules.LLaMA import LLaMAModel
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user