Streamline GPTQ-for-LLaMa support

This commit is contained in:
jllllll 2023-08-09 23:42:34 -05:00
parent a3295dd666
commit bee73cedbd
No known key found for this signature in database
GPG Key ID: 7FCD00C417935797
5 changed files with 21 additions and 55 deletions

View File

@ -280,9 +280,6 @@ Optionally, you can use the following command-line flags:
| `--pre_layer PRE_LAYER [PRE_LAYER ...]` | The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models. For multi-gpu, write the numbers separated by spaces, eg `--pre_layer 30 60`. |
| `--checkpoint CHECKPOINT` | The path to the quantized checkpoint file. If not specified, it will be automatically detected. |
| `--monkey-patch` | Apply the monkey patch for using LoRAs with quantized models.
| `--quant_attn` | (triton) Enable quant attention. |
| `--warmup_autotune` | (triton) Enable warmup autotune. |
| `--fused_mlp` | (triton) Enable fused mlp. |
#### DeepSpeed

View File

@ -11,26 +11,9 @@ from transformers import AutoConfig, AutoModelForCausalLM
import modules.shared as shared
from modules.logging_colors import logger
sys.path.insert(0, str(Path("repositories/GPTQ-for-LLaMa")))
try:
import llama_inference_offload
except ImportError:
logger.error('Failed to load GPTQ-for-LLaMa')
logger.error('See https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md')
sys.exit(-1)
try:
from modelutils import find_layers
except ImportError:
from utils import find_layers
try:
from quant import make_quant
is_triton = False
except ImportError:
import quant
is_triton = True
from gptq_for_llama import llama_inference_offload
from gptq_for_llama.modelutils import find_layers
from gptq_for_llama.quant import make_quant
# This function is a replacement for the load_quant function in the
@ -59,24 +42,21 @@ def _load_quant(model, checkpoint, wbits, groupsize=-1, faster_kernel=False, exc
if name in layers:
del layers[name]
if not is_triton:
gptq_args = inspect.getfullargspec(make_quant).args
gptq_args = inspect.getfullargspec(make_quant).args
make_quant_kwargs = {
'module': model,
'names': layers,
'bits': wbits,
}
if 'groupsize' in gptq_args:
make_quant_kwargs['groupsize'] = groupsize
if 'faster' in gptq_args:
make_quant_kwargs['faster'] = faster_kernel
if 'kernel_switch_threshold' in gptq_args:
make_quant_kwargs['kernel_switch_threshold'] = kernel_switch_threshold
make_quant_kwargs = {
'module': model,
'names': layers,
'bits': wbits,
}
if 'groupsize' in gptq_args:
make_quant_kwargs['groupsize'] = groupsize
if 'faster' in gptq_args:
make_quant_kwargs['faster'] = faster_kernel
if 'kernel_switch_threshold' in gptq_args:
make_quant_kwargs['kernel_switch_threshold'] = kernel_switch_threshold
make_quant(**make_quant_kwargs)
else:
quant.make_quant_linear(model, layers, wbits, groupsize)
make_quant(**make_quant_kwargs)
del layers
if checkpoint.endswith('.safetensors'):
@ -85,18 +65,6 @@ def _load_quant(model, checkpoint, wbits, groupsize=-1, faster_kernel=False, exc
else:
model.load_state_dict(torch.load(checkpoint), strict=False)
if is_triton:
if shared.args.quant_attn:
quant.make_quant_attn(model)
if eval and shared.args.fused_mlp:
quant.make_fused_mlp(model)
if shared.args.warmup_autotune:
quant.autotune_warmup_linear(model, transpose=not eval)
if eval and shared.args.fused_mlp:
quant.autotune_warmup_fused(model)
model.seqlen = 2048
return model

View File

@ -138,9 +138,6 @@ parser.add_argument('--groupsize', type=int, default=-1, help='Group size.')
parser.add_argument('--pre_layer', type=int, nargs="+", help='The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models. For multi-gpu, write the numbers separated by spaces, eg --pre_layer 30 60.')
parser.add_argument('--checkpoint', type=str, help='The path to the quantized checkpoint file. If not specified, it will be automatically detected.')
parser.add_argument('--monkey-patch', action='store_true', help='Apply the monkey patch for using LoRAs with quantized models.')
parser.add_argument('--quant_attn', action='store_true', help='(triton) Enable quant attention.')
parser.add_argument('--warmup_autotune', action='store_true', help='(triton) Enable warmup autotune.')
parser.add_argument('--fused_mlp', action='store_true', help='(triton) Enable fused mlp.')
# AutoGPTQ
parser.add_argument('--triton', action='store_true', help='Use triton.')

View File

@ -110,7 +110,7 @@ def create_ui():
shared.gradio['mlock'] = gr.Checkbox(label="mlock", value=shared.args.mlock)
shared.gradio['llama_cpp_seed'] = gr.Number(label='Seed (0 for random)', value=shared.args.llama_cpp_seed)
shared.gradio['trust_remote_code'] = gr.Checkbox(label="trust-remote-code", value=shared.args.trust_remote_code, info='Make sure to inspect the .py files inside the model folder before loading it with this option enabled.')
shared.gradio['gptq_for_llama_info'] = gr.Markdown('GPTQ-for-LLaMa is currently 2x faster than AutoGPTQ on some systems. It is installed by default with the one-click installers. Otherwise, it has to be installed manually following the instructions here: [instructions](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#installation-1).')
shared.gradio['gptq_for_llama_info'] = gr.Markdown('GPTQ-for-LLaMa support is currently only kept for compatibility with older GPUs. AutoGPTQ or ExLlama is preferred when compatible. GPTQ-for-LLaMa is installed by default with the one-click installers. Otherwise, it has to be installed manually following the instructions here: [instructions](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#installation-1).')
shared.gradio['exllama_info'] = gr.Markdown('For more information, consult the [docs](https://github.com/oobabooga/text-generation-webui/blob/main/docs/ExLlama.md).')
shared.gradio['exllama_HF_info'] = gr.Markdown('ExLlama_HF is a wrapper that lets you use ExLlama like a Transformers model, which means it can use the Transformers samplers. It\'s a bit slower than the regular ExLlama.')
shared.gradio['llamacpp_HF_info'] = gr.Markdown('llamacpp_HF is a wrapper that lets you use llama.cpp like a Transformers model, which means it can use the Transformers samplers. To use it, make sure to first download oobabooga/llama-tokenizer under "Download custom model or LoRA".')

View File

@ -36,3 +36,7 @@ https://github.com/abetlen/llama-cpp-python/releases/download/v0.1.77/llama_cpp_
# llama-cpp-python with CUDA support
https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.1.77+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows"
https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.1.77+cu117-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
# GPTQ-for-LLaMa
https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.0/gptq_for_llama-0.1.0+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows"
https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.0/gptq_for_llama-0.1.0+cu117-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"