Add mirostat parameters for llama.cpp (#2287)

This commit is contained in:
oobabooga 2023-05-22 19:37:24 -03:00 committed by GitHub
parent ec7437f00a
commit c0fd7f3257
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 80 additions and 15 deletions

View File

@ -46,6 +46,9 @@ async def run(user_input, history):
'penalty_alpha': 0, 'penalty_alpha': 0,
'length_penalty': 1, 'length_penalty': 1,
'early_stopping': False, 'early_stopping': False,
'mirostat_mode': 0,
'mirostat_tau': 5,
'mirostat_eta': 0.1,
'seed': -1, 'seed': -1,
'add_bos_token': True, 'add_bos_token': True,
'truncation_length': 2048, 'truncation_length': 2048,

View File

@ -40,6 +40,9 @@ def run(user_input, history):
'penalty_alpha': 0, 'penalty_alpha': 0,
'length_penalty': 1, 'length_penalty': 1,
'early_stopping': False, 'early_stopping': False,
'mirostat_mode': 0,
'mirostat_tau': 5,
'mirostat_eta': 0.1,
'seed': -1, 'seed': -1,
'add_bos_token': True, 'add_bos_token': True,
'truncation_length': 2048, 'truncation_length': 2048,

View File

@ -34,6 +34,9 @@ async def run(context):
'penalty_alpha': 0, 'penalty_alpha': 0,
'length_penalty': 1, 'length_penalty': 1,
'early_stopping': False, 'early_stopping': False,
'mirostat_mode': 0,
'mirostat_tau': 5,
'mirostat_eta': 0.1,
'seed': -1, 'seed': -1,
'add_bos_token': True, 'add_bos_token': True,
'truncation_length': 2048, 'truncation_length': 2048,

View File

@ -26,6 +26,9 @@ def run(prompt):
'penalty_alpha': 0, 'penalty_alpha': 0,
'length_penalty': 1, 'length_penalty': 1,
'early_stopping': False, 'early_stopping': False,
'mirostat_mode': 0,
'mirostat_tau': 5,
'mirostat_eta': 0.1,
'seed': -1, 'seed': -1,
'add_bos_token': True, 'add_bos_token': True,
'truncation_length': 2048, 'truncation_length': 2048,

View File

@ -34,7 +34,6 @@
.dark a { .dark a {
color: white !important; color: white !important;
text-decoration: none !important;
} }
ol li p, ul li p { ol li p, ul li p {

View File

@ -0,0 +1,23 @@
# Generation parameters
For a description of the generation parameters provided by the transformers library, see this link: https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig
### llama.cpp
llama.cpp only uses the following parameters:
* temperature
* top_p
* top_k
* repetition_penalty
* mirostat_mode
* mirostat_tau
* mirostat_eta
### RWKV
RWKV only uses the following parameters:
* temperature
* top_p
* top_k

View File

@ -7,6 +7,7 @@
* [Using LoRAs](Using-LoRAs.md) * [Using LoRAs](Using-LoRAs.md)
* [llama.cpp models](llama.cpp-models.md) * [llama.cpp models](llama.cpp-models.md)
* [RWKV model](RWKV-model.md) * [RWKV model](RWKV-model.md)
* [Generation parameters](Generation-parameters.md)
* [Extensions](Extensions.md) * [Extensions](Extensions.md)
* [Chat mode](Chat-mode.md) * [Chat mode](Chat-mode.md)
* [DeepSpeed](DeepSpeed.md) * [DeepSpeed](DeepSpeed.md)

View File

@ -26,6 +26,9 @@ def build_parameters(body, chat=False):
'penalty_alpha': float(body.get('penalty_alpha', 0)), 'penalty_alpha': float(body.get('penalty_alpha', 0)),
'length_penalty': float(body.get('length_penalty', 1)), 'length_penalty': float(body.get('length_penalty', 1)),
'early_stopping': bool(body.get('early_stopping', False)), 'early_stopping': bool(body.get('early_stopping', False)),
'mirostat_mode': int(body.get('mirostat_mode', 0)),
'mirostat_tau': float(body.get('mirostat_tau', 5)),
'mirostat_eta': float(body.get('mirostat_eta', 0.1)),
'seed': int(body.get('seed', -1)), 'seed': int(body.get('seed', -1)),
'add_bos_token': bool(body.get('add_bos_token', True)), 'add_bos_token': bool(body.get('add_bos_token', True)),
'truncation_length': int(body.get('truncation_length', body.get('max_context_length', 2048))), 'truncation_length': int(body.get('truncation_length', body.get('max_context_length', 2048))),

View File

@ -216,6 +216,9 @@ class Handler(BaseHTTPRequestHandler):
'penalty_alpha': 0.0, 'penalty_alpha': 0.0,
'length_penalty': 1, 'length_penalty': 1,
'early_stopping': False, 'early_stopping': False,
'mirostat_mode': 0,
'mirostat_tau': 5,
'mirostat_eta': 0.1,
'ban_eos_token': False, 'ban_eos_token': False,
'skip_special_tokens': True, 'skip_special_tokens': True,
} }
@ -526,6 +529,9 @@ class Handler(BaseHTTPRequestHandler):
'penalty_alpha': 0.0, 'penalty_alpha': 0.0,
'length_penalty': 1, 'length_penalty': 1,
'early_stopping': False, 'early_stopping': False,
'mirostat_mode': 0,
'mirostat_tau': 5,
'mirostat_eta': 0.1,
'ban_eos_token': False, 'ban_eos_token': False,
'skip_special_tokens': True, 'skip_special_tokens': True,
'custom_stopping_strings': [], 'custom_stopping_strings': [],

View File

@ -59,7 +59,7 @@ class LlamaCppModel:
string = string.encode() string = string.encode()
return self.model.tokenize(string) return self.model.tokenize(string)
def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=1, callback=None): def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=1, mirostat_mode=0, mirostat_tau=5, mirostat_eta=0.1, callback=None):
context = context if type(context) is str else context.decode() context = context if type(context) is str else context.decode()
completion_chunks = self.model.create_completion( completion_chunks = self.model.create_completion(
prompt=context, prompt=context,
@ -68,6 +68,9 @@ class LlamaCppModel:
top_p=top_p, top_p=top_p,
top_k=top_k, top_k=top_k,
repeat_penalty=repetition_penalty, repeat_penalty=repetition_penalty,
mirostat_mode=int(mirostat_mode),
mirostat_tau=mirostat_tau,
mirostat_eta=mirostat_eta,
stream=True stream=True
) )
output = "" output = ""

View File

@ -294,6 +294,10 @@ def generate_reply_custom(question, original_question, seed, state, eos_token=No
for k in ['temperature', 'top_p', 'top_k', 'repetition_penalty']: for k in ['temperature', 'top_p', 'top_k', 'repetition_penalty']:
generate_params[k] = state[k] generate_params[k] = state[k]
if shared.model_type == 'llamacpp':
for k in ['mirostat_mode', 'mirostat_tau', 'mirostat_eta']:
generate_params[k] = state[k]
t0 = time.time() t0 = time.time()
reply = '' reply = ''
try: try:

View File

@ -37,7 +37,7 @@ def list_model_elements():
def list_interface_input_elements(chat=False): def list_interface_input_elements(chat=False):
elements = ['max_new_tokens', 'seed', 'temperature', 'top_p', 'top_k', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', 'encoder_repetition_penalty', 'no_repeat_ngram_size', 'min_length', 'do_sample', 'penalty_alpha', 'num_beams', 'length_penalty', 'early_stopping', 'add_bos_token', 'ban_eos_token', 'truncation_length', 'custom_stopping_strings', 'skip_special_tokens', 'preset_menu', 'stream'] elements = ['max_new_tokens', 'seed', 'temperature', 'top_p', 'top_k', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', 'encoder_repetition_penalty', 'no_repeat_ngram_size', 'min_length', 'do_sample', 'penalty_alpha', 'num_beams', 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'add_bos_token', 'ban_eos_token', 'truncation_length', 'custom_stopping_strings', 'skip_special_tokens', 'preset_menu', 'stream']
if chat: if chat:
elements += ['name1', 'name2', 'greeting', 'context', 'chat_prompt_size', 'chat_generation_attempts', 'stop_at_newline', 'mode', 'instruction_template', 'character_menu', 'name1_instruct', 'name2_instruct', 'context_instruct', 'turn_template', 'chat_style', 'chat-instruct_command'] elements += ['name1', 'name2', 'greeting', 'context', 'chat_prompt_size', 'chat_generation_attempts', 'stop_at_newline', 'mode', 'instruction_template', 'character_menu', 'name1_instruct', 'name2_instruct', 'context_instruct', 'turn_template', 'chat_style', 'chat-instruct_command']

View File

@ -97,7 +97,11 @@ def load_preset_values(preset_menu, state, return_dict=False):
'length_penalty': 1, 'length_penalty': 1,
'no_repeat_ngram_size': 0, 'no_repeat_ngram_size': 0,
'early_stopping': False, 'early_stopping': False,
'mirostat_mode': 0,
'mirostat_tau': 5.0,
'mirostat_eta': 0.1,
} }
with open(Path(f'presets/{preset_menu}.txt'), 'r') as infile: with open(Path(f'presets/{preset_menu}.txt'), 'r') as infile:
preset = infile.read() preset = infile.read()
for i in preset.splitlines(): for i in preset.splitlines():
@ -110,7 +114,7 @@ def load_preset_values(preset_menu, state, return_dict=False):
return generate_params return generate_params
else: else:
state.update(generate_params) state.update(generate_params)
return state, *[generate_params[k] for k in ['do_sample', 'temperature', 'top_p', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']] return state, *[generate_params[k] for k in ['do_sample', 'temperature', 'top_p', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta']]
def upload_soft_prompt(file): def upload_soft_prompt(file):
@ -434,27 +438,32 @@ def create_settings_menus(default_preset):
with gr.Row(): with gr.Row():
with gr.Column(): with gr.Column():
with gr.Row(): with gr.Row():
shared.gradio['preset_menu'] = gr.Dropdown(choices=utils.get_available_presets(), value=default_preset if not shared.args.flexgen else 'Naive', label='Generation parameters preset') with gr.Column():
ui.create_refresh_button(shared.gradio['preset_menu'], lambda: None, lambda: {'choices': utils.get_available_presets()}, 'refresh-button') with gr.Row():
with gr.Column(): shared.gradio['preset_menu'] = gr.Dropdown(choices=utils.get_available_presets(), value=default_preset if not shared.args.flexgen else 'Naive', label='Generation parameters preset')
shared.gradio['seed'] = gr.Number(value=shared.settings['seed'], label='Seed (-1 for random)') ui.create_refresh_button(shared.gradio['preset_menu'], lambda: None, lambda: {'choices': utils.get_available_presets()}, 'refresh-button')
with gr.Column():
shared.gradio['seed'] = gr.Number(value=shared.settings['seed'], label='Seed (-1 for random)')
with gr.Row():
with gr.Column():
with gr.Box(): with gr.Box():
gr.Markdown('Main parameters ([click here to view technical documentation](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig))') gr.Markdown('Main parameters')
with gr.Row(): with gr.Row():
with gr.Column(): with gr.Column():
shared.gradio['temperature'] = gr.Slider(0.01, 1.99, value=generate_params['temperature'], step=0.01, label='temperature', info='Primary factor to control randomness of outputs. 0 = deterministic (only the most likely token is used). Higher value = more randomness.') shared.gradio['temperature'] = gr.Slider(0.01, 1.99, value=generate_params['temperature'], step=0.01, label='temperature', info='Primary factor to control randomness of outputs. 0 = deterministic (only the most likely token is used). Higher value = more randomness.')
shared.gradio['top_p'] = gr.Slider(0.0, 1.0, value=generate_params['top_p'], step=0.01, label='top_p', info='If not set to 1, select tokens with probabilities adding up to less than this number. Higher value = higher range of possible random results.') shared.gradio['top_p'] = gr.Slider(0.0, 1.0, value=generate_params['top_p'], step=0.01, label='top_p', info='If not set to 1, select tokens with probabilities adding up to less than this number. Higher value = higher range of possible random results.')
shared.gradio['top_k'] = gr.Slider(0, 200, value=generate_params['top_k'], step=1, label='top_k', info='Similar to top_p, but select instead only the top_k most likely tokens. Higher value = higher range of possible random results.') shared.gradio['top_k'] = gr.Slider(0, 200, value=generate_params['top_k'], step=1, label='top_k', info='Similar to top_p, but select instead only the top_k most likely tokens. Higher value = higher range of possible random results.')
shared.gradio['typical_p'] = gr.Slider(0.0, 1.0, value=generate_params['typical_p'], step=0.01, label='typical_p', info='If not set to 1, select only tokens that are at least this much more likely to appear than random tokens, given the prior text.') shared.gradio['typical_p'] = gr.Slider(0.0, 1.0, value=generate_params['typical_p'], step=0.01, label='typical_p', info='If not set to 1, select only tokens that are at least this much more likely to appear than random tokens, given the prior text.')
shared.gradio['epsilon_cutoff'] = gr.Slider(0, 9, value=generate_params['epsilon_cutoff'], step=0.01, label='epsilon_cutoff', info='In units of 1e-4')
shared.gradio['eta_cutoff'] = gr.Slider(0, 20, value=generate_params['eta_cutoff'], step=0.01, label='eta_cutoff', info='In units of 1e-4')
with gr.Column(): with gr.Column():
shared.gradio['repetition_penalty'] = gr.Slider(1.0, 1.5, value=generate_params['repetition_penalty'], step=0.01, label='repetition_penalty', info='Exponential penalty factor for repeating prior tokens. 1 means no penalty, higher value = less repetition, lower value = more repetition.') shared.gradio['repetition_penalty'] = gr.Slider(1.0, 1.5, value=generate_params['repetition_penalty'], step=0.01, label='repetition_penalty', info='Exponential penalty factor for repeating prior tokens. 1 means no penalty, higher value = less repetition, lower value = more repetition.')
shared.gradio['encoder_repetition_penalty'] = gr.Slider(0.8, 1.5, value=generate_params['encoder_repetition_penalty'], step=0.01, label='encoder_repetition_penalty', info='Also known as the "Hallucinations filter". Used to penalize tokens that are *not* in the prior text. Higher value = more likely to stay in context, lower value = more likely to diverge.') shared.gradio['encoder_repetition_penalty'] = gr.Slider(0.8, 1.5, value=generate_params['encoder_repetition_penalty'], step=0.01, label='encoder_repetition_penalty', info='Also known as the "Hallucinations filter". Used to penalize tokens that are *not* in the prior text. Higher value = more likely to stay in context, lower value = more likely to diverge.')
shared.gradio['no_repeat_ngram_size'] = gr.Slider(0, 20, step=1, value=generate_params['no_repeat_ngram_size'], label='no_repeat_ngram_size', info='If not set to 0, specifies the length of token sets that are completely blocked from repeating at all. Higher values = blocks larger phrases, lower values = blocks words or letters from repeating. Only 0 or high values are a good idea in most cases.') shared.gradio['no_repeat_ngram_size'] = gr.Slider(0, 20, step=1, value=generate_params['no_repeat_ngram_size'], label='no_repeat_ngram_size', info='If not set to 0, specifies the length of token sets that are completely blocked from repeating at all. Higher values = blocks larger phrases, lower values = blocks words or letters from repeating. Only 0 or high values are a good idea in most cases.')
shared.gradio['min_length'] = gr.Slider(0, 2000, step=1, value=generate_params['min_length'], label='min_length', info='Minimum generation length in tokens.') shared.gradio['min_length'] = gr.Slider(0, 2000, step=1, value=generate_params['min_length'], label='min_length', info='Minimum generation length in tokens.')
shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample') shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample')
with gr.Column(): with gr.Column():
with gr.Box(): with gr.Box():
with gr.Row(): with gr.Row():
@ -468,9 +477,12 @@ def create_settings_menus(default_preset):
shared.gradio['early_stopping'] = gr.Checkbox(value=generate_params['early_stopping'], label='early_stopping') shared.gradio['early_stopping'] = gr.Checkbox(value=generate_params['early_stopping'], label='early_stopping')
with gr.Column(): with gr.Column():
gr.Markdown('Mirostrat (for llama.cpp)')
shared.gradio['mirostat_mode'] = gr.Slider(0, 2, step=1, value=generate_params['mirostat_mode'], label='mirostat_mode')
shared.gradio['mirostat_tau'] = gr.Slider(0, 10, step=0.01, value=generate_params['mirostat_tau'], label='mirostat_tau')
shared.gradio['mirostat_eta'] = gr.Slider(0, 1, step=0.01, value=generate_params['mirostat_eta'], label='mirostat_eta')
gr.Markdown('Other') gr.Markdown('Other')
shared.gradio['epsilon_cutoff'] = gr.Slider(0, 9, value=generate_params['epsilon_cutoff'], step=0.01, label='epsilon_cutoff', info='In units of 1e-4')
shared.gradio['eta_cutoff'] = gr.Slider(0, 20, value=generate_params['eta_cutoff'], step=0.01, label='eta_cutoff', info='In units of 1e-4')
with gr.Accordion('Soft prompt', open=False): with gr.Accordion('Soft prompt', open=False):
with gr.Row(): with gr.Row():
shared.gradio['softprompts_menu'] = gr.Dropdown(choices=utils.get_available_softprompts(), value='None', label='Soft prompt') shared.gradio['softprompts_menu'] = gr.Dropdown(choices=utils.get_available_softprompts(), value='None', label='Soft prompt')
@ -492,7 +504,9 @@ def create_settings_menus(default_preset):
shared.gradio['skip_special_tokens'] = gr.Checkbox(value=shared.settings['skip_special_tokens'], label='Skip special tokens', info='Some specific models need this unset.') shared.gradio['skip_special_tokens'] = gr.Checkbox(value=shared.settings['skip_special_tokens'], label='Skip special tokens', info='Some specific models need this unset.')
shared.gradio['stream'] = gr.Checkbox(value=not shared.args.no_stream, label='Activate text streaming') shared.gradio['stream'] = gr.Checkbox(value=not shared.args.no_stream, label='Activate text streaming')
shared.gradio['preset_menu'].change(load_preset_values, [shared.gradio[k] for k in ['preset_menu', 'interface_state']], [shared.gradio[k] for k in ['interface_state', 'do_sample', 'temperature', 'top_p', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping']]) gr.Markdown('[Click here for more information.](https://github.com/oobabooga/text-generation-webui/docs/Generation-parameters.md)')
shared.gradio['preset_menu'].change(load_preset_values, [shared.gradio[k] for k in ['preset_menu', 'interface_state']], [shared.gradio[k] for k in ['interface_state', 'do_sample', 'temperature', 'top_p', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta']])
shared.gradio['softprompts_menu'].change(load_soft_prompt, shared.gradio['softprompts_menu'], shared.gradio['softprompts_menu'], show_progress=True) shared.gradio['softprompts_menu'].change(load_soft_prompt, shared.gradio['softprompts_menu'], shared.gradio['softprompts_menu'], show_progress=True)
shared.gradio['upload_softprompt'].upload(upload_soft_prompt, shared.gradio['upload_softprompt'], shared.gradio['softprompts_menu']) shared.gradio['upload_softprompt'].upload(upload_soft_prompt, shared.gradio['upload_softprompt'], shared.gradio['softprompts_menu'])