mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-25 17:29:22 +01:00
Add ExLlamaV2 and ExLlamav2_HF loaders (#3881)
This commit is contained in:
parent
a821928877
commit
c2a309f56e
@ -210,7 +210,7 @@ llama-65b-gptq-3bit:
|
||||
instruction_template: 'Alpaca'
|
||||
.*llama-(2|v2):
|
||||
truncation_length: 4096
|
||||
.*llama-(2|v2).*chat:
|
||||
.*llama(-?)(2|v2).*chat:
|
||||
instruction_template: 'Llama-v2'
|
||||
.*newhope:
|
||||
instruction_template: 'NewHope'
|
||||
|
102
modules/exllamav2.py
Normal file
102
modules/exllamav2.py
Normal file
@ -0,0 +1,102 @@
|
||||
import random
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from exllamav2 import (
|
||||
ExLlamaV2,
|
||||
ExLlamaV2Cache,
|
||||
ExLlamaV2Config,
|
||||
ExLlamaV2Tokenizer
|
||||
)
|
||||
from exllamav2.generator import ExLlamaV2BaseGenerator, ExLlamaV2Sampler
|
||||
|
||||
from modules import shared
|
||||
from modules.text_generation import get_max_prompt_length
|
||||
|
||||
|
||||
class Exllamav2Model:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(self, path_to_model):
|
||||
|
||||
path_to_model = Path(f'{shared.args.model_dir}') / Path(path_to_model)
|
||||
|
||||
config = ExLlamaV2Config()
|
||||
config.model_dir = path_to_model
|
||||
config.prepare()
|
||||
|
||||
config.max_seq_len = shared.args.max_seq_len
|
||||
model = ExLlamaV2(config)
|
||||
|
||||
split = None
|
||||
if shared.args.gpu_split:
|
||||
split = [float(alloc) for alloc in shared.args.gpu_split.split(",")]
|
||||
|
||||
model.load(split)
|
||||
|
||||
tokenizer = ExLlamaV2Tokenizer(config)
|
||||
cache = ExLlamaV2Cache(model)
|
||||
generator = ExLlamaV2BaseGenerator(model, cache, tokenizer)
|
||||
|
||||
result = self()
|
||||
result.model = model
|
||||
result.cache = cache
|
||||
result.tokenizer = tokenizer
|
||||
result.generator = generator
|
||||
return result, tokenizer
|
||||
|
||||
def generate_with_streaming(self, prompt, state):
|
||||
settings = ExLlamaV2Sampler.Settings()
|
||||
settings.temperature = state['temperature']
|
||||
settings.top_k = state['top_k']
|
||||
settings.top_p = state['top_p']
|
||||
settings.token_repetition_penalty = state['repetition_penalty']
|
||||
settings.token_repetition_range = -1 if state['repetition_penalty_range'] <= 0 else state['repetition_penalty_range']
|
||||
if state['ban_eos_token']:
|
||||
settings.disallow_tokens(self.tokenizer, [self.tokenizer.eos_token_id])
|
||||
|
||||
ids = self.tokenizer.encode(prompt)
|
||||
ids = ids[:, -get_max_prompt_length(state):]
|
||||
initial_len = ids.shape[-1]
|
||||
|
||||
if state['auto_max_new_tokens']:
|
||||
max_new_tokens = state['truncation_length'] - ids.shape[-1]
|
||||
else:
|
||||
max_new_tokens = state['max_new_tokens']
|
||||
|
||||
# _gen_begin_base
|
||||
self.cache.current_seq_len = 0
|
||||
self.model.forward(ids[:, :-1], self.cache, input_mask=None, preprocess_only=True)
|
||||
|
||||
has_leading_space = False
|
||||
for i in range(max_new_tokens):
|
||||
logits = self.model.forward(ids[:, -1:], self.cache, input_mask=None).float().cpu()
|
||||
token, _ = ExLlamaV2Sampler.sample(logits, settings, ids, random.random())
|
||||
ids = torch.cat([ids, token], dim=1)
|
||||
|
||||
if i == 0 and self.tokenizer.tokenizer.IdToPiece(int(token)).startswith('▁'):
|
||||
has_leading_space = True
|
||||
|
||||
decoded_text = self.tokenizer.decode(ids[:, initial_len:])[0]
|
||||
if has_leading_space:
|
||||
decoded_text = ' ' + decoded_text
|
||||
|
||||
yield decoded_text
|
||||
|
||||
if token.item() == self.tokenizer.eos_token_id or shared.stop_everything:
|
||||
break
|
||||
|
||||
def generate(self, prompt, state):
|
||||
output = ''
|
||||
for output in self.generate_with_streaming(prompt, state):
|
||||
pass
|
||||
|
||||
return output
|
||||
|
||||
def encode(self, string, **kwargs):
|
||||
return self.tokenizer.encode(string)
|
||||
|
||||
def decode(self, string, **kwargs):
|
||||
return self.tokenizer.decode(string)[0]
|
119
modules/exllamav2_hf.py
Normal file
119
modules/exllamav2_hf.py
Normal file
@ -0,0 +1,119 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional, Union
|
||||
|
||||
import torch
|
||||
from exllamav2 import ExLlamaV2, ExLlamaV2Cache, ExLlamaV2Config
|
||||
from torch.nn import CrossEntropyLoss
|
||||
from transformers import GenerationConfig, PretrainedConfig, PreTrainedModel
|
||||
from transformers.modeling_outputs import CausalLMOutputWithPast
|
||||
|
||||
from modules import shared
|
||||
from modules.logging_colors import logger
|
||||
|
||||
|
||||
class Exllamav2HF(PreTrainedModel):
|
||||
def __init__(self, config: ExLlamaV2Config):
|
||||
super().__init__(PretrainedConfig())
|
||||
self.ex_config = config
|
||||
self.ex_model = ExLlamaV2(config)
|
||||
split = None
|
||||
if shared.args.gpu_split:
|
||||
split = [float(alloc) for alloc in shared.args.gpu_split.split(",")]
|
||||
|
||||
self.ex_model.load(split)
|
||||
|
||||
self.generation_config = GenerationConfig()
|
||||
|
||||
self.ex_cache = ExLlamaV2Cache(self.ex_model)
|
||||
self.past_seq = None
|
||||
|
||||
if shared.args.cfg_cache:
|
||||
self.ex_cache_negative = ExLlamaV2Cache(self.ex_model)
|
||||
self.past_seq_negative = None
|
||||
|
||||
def _validate_model_class(self):
|
||||
pass
|
||||
|
||||
def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]):
|
||||
pass
|
||||
|
||||
def prepare_inputs_for_generation(self, input_ids, **kwargs):
|
||||
return {'input_ids': input_ids, **kwargs}
|
||||
|
||||
@property
|
||||
def device(self) -> torch.device:
|
||||
return torch.device(0)
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
use_cache = kwargs.get('use_cache', True)
|
||||
labels = kwargs.get('labels', None)
|
||||
past_key_values = kwargs.get('past_key_values', None)
|
||||
|
||||
if len(args) > 0:
|
||||
if not shared.args.cfg_cache:
|
||||
logger.error("Please enable the cfg-cache option to use CFG with ExLlamav2_HF.")
|
||||
return
|
||||
|
||||
input_ids = args[0]
|
||||
is_negative = True
|
||||
past_seq = self.past_seq_negative
|
||||
ex_cache = self.ex_cache_negative
|
||||
else:
|
||||
input_ids = kwargs['input_ids']
|
||||
is_negative = False
|
||||
past_seq = self.past_seq
|
||||
ex_cache = self.ex_cache
|
||||
|
||||
seq = input_ids[0].tolist()
|
||||
if is_negative and past_key_values is not None:
|
||||
seq = past_key_values + seq
|
||||
|
||||
seq_tensor = torch.tensor(seq)
|
||||
|
||||
# Make the forward call
|
||||
if labels is None:
|
||||
if past_seq is None or not torch.equal(past_seq, seq_tensor[:-1]):
|
||||
ex_cache.current_seq_len = 0
|
||||
self.ex_model.forward(torch.tensor([seq[:-1]], dtype=torch.long), ex_cache, preprocess_only=True)
|
||||
|
||||
logits = self.ex_model.forward(torch.tensor([seq[-1:]], dtype=torch.long), ex_cache).to(input_ids.device)
|
||||
else:
|
||||
ex_cache.current_seq_len = 0
|
||||
# logits = self.ex_model.forward(torch.tensor([seq], dtype=torch.long), ex_cache, last_id_only=False)
|
||||
logits = self.ex_model.forward(torch.tensor([seq], dtype=torch.long), ex_cache)
|
||||
|
||||
if is_negative:
|
||||
self.past_seq_negative = seq_tensor
|
||||
else:
|
||||
self.past_seq = seq_tensor
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
# Shift so that tokens < n predict n
|
||||
shift_logits = logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
loss_fct = CrossEntropyLoss()
|
||||
shift_logits = shift_logits.view(-1, logits.shape[-1])
|
||||
shift_labels = shift_labels.view(-1)
|
||||
# Enable model parallelism
|
||||
shift_labels = shift_labels.to(shift_logits.device)
|
||||
loss = loss_fct(shift_logits, shift_labels)
|
||||
|
||||
return CausalLMOutputWithPast(logits=logits, past_key_values=seq if use_cache else None, loss=loss)
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
|
||||
assert len(model_args) == 0 and len(kwargs) == 0, "extra args is currently not supported"
|
||||
if isinstance(pretrained_model_name_or_path, str):
|
||||
pretrained_model_name_or_path = Path(pretrained_model_name_or_path)
|
||||
|
||||
pretrained_model_name_or_path = Path(f'{shared.args.model_dir}') / Path(pretrained_model_name_or_path)
|
||||
|
||||
config = ExLlamaV2Config()
|
||||
config.model_dir = pretrained_model_name_or_path
|
||||
config.prepare()
|
||||
config.max_seq_len = shared.args.max_seq_len
|
||||
|
||||
return Exllamav2HF(config)
|
@ -42,6 +42,15 @@ loaders_and_params = OrderedDict({
|
||||
'compress_pos_emb',
|
||||
'exllama_info',
|
||||
],
|
||||
'ExLlamav2': [
|
||||
'gpu_split',
|
||||
'max_seq_len',
|
||||
],
|
||||
'ExLlamav2_HF': [
|
||||
'gpu_split',
|
||||
'max_seq_len',
|
||||
'cfg_cache',
|
||||
],
|
||||
'AutoGPTQ': [
|
||||
'triton',
|
||||
'no_inject_fused_attention',
|
||||
@ -180,6 +189,42 @@ loaders_samplers = {
|
||||
'ban_eos_token',
|
||||
'auto_max_new_tokens',
|
||||
},
|
||||
'ExLlamav2': {
|
||||
'temperature',
|
||||
'top_p',
|
||||
'top_k',
|
||||
'repetition_penalty',
|
||||
'repetition_penalty_range',
|
||||
'seed',
|
||||
'ban_eos_token',
|
||||
'auto_max_new_tokens',
|
||||
},
|
||||
'ExLlamav2_HF': {
|
||||
'temperature',
|
||||
'top_p',
|
||||
'top_k',
|
||||
'typical_p',
|
||||
'epsilon_cutoff',
|
||||
'eta_cutoff',
|
||||
'tfs',
|
||||
'top_a',
|
||||
'repetition_penalty',
|
||||
'repetition_penalty_range',
|
||||
'encoder_repetition_penalty',
|
||||
'no_repeat_ngram_size',
|
||||
'min_length',
|
||||
'seed',
|
||||
'do_sample',
|
||||
'mirostat_mode',
|
||||
'mirostat_tau',
|
||||
'mirostat_eta',
|
||||
'guidance_scale',
|
||||
'negative_prompt',
|
||||
'ban_eos_token',
|
||||
'add_bos_token',
|
||||
'skip_special_tokens',
|
||||
'auto_max_new_tokens',
|
||||
},
|
||||
'AutoGPTQ': {
|
||||
'temperature',
|
||||
'top_p',
|
||||
|
@ -59,6 +59,8 @@ def load_model(model_name, loader=None):
|
||||
'RWKV': RWKV_loader,
|
||||
'ExLlama': ExLlama_loader,
|
||||
'ExLlama_HF': ExLlama_HF_loader,
|
||||
'ExLlamav2': ExLlamav2_loader,
|
||||
'ExLlamav2_HF': ExLlamav2_HF_loader,
|
||||
'ctransformers': ctransformers_loader,
|
||||
}
|
||||
|
||||
@ -329,6 +331,19 @@ def ExLlama_HF_loader(model_name):
|
||||
return ExllamaHF.from_pretrained(model_name)
|
||||
|
||||
|
||||
def ExLlamav2_loader(model_name):
|
||||
from modules.exllamav2 import Exllamav2Model
|
||||
|
||||
model, tokenizer = Exllamav2Model.from_pretrained(model_name)
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
def ExLlamav2_HF_loader(model_name):
|
||||
from modules.exllamav2_hf import Exllamav2HF
|
||||
|
||||
return Exllamav2HF.from_pretrained(model_name)
|
||||
|
||||
|
||||
def get_max_memory_dict():
|
||||
max_memory = {}
|
||||
if shared.args.gpu_memory:
|
||||
|
@ -219,6 +219,10 @@ def fix_loader_name(name):
|
||||
return 'ExLlama'
|
||||
elif name in ['exllama-hf', 'exllama_hf', 'exllama hf', 'ex-llama-hf', 'ex_llama_hf']:
|
||||
return 'ExLlama_HF'
|
||||
elif name in ['exllamav2', 'exllama-v2', 'ex_llama-v2', 'exlamav2', 'exlama-v2']:
|
||||
return 'ExLlamav2'
|
||||
elif name in ['exllamav2-hf', 'exllamav2_hf', 'exllama-v2-hf', 'exllama_v2_hf', 'exllama-v2_hf']:
|
||||
return 'ExLlamav2_HF'
|
||||
elif name in ['ctransformers', 'ctranforemrs', 'ctransformer']:
|
||||
return 'ctransformers'
|
||||
|
||||
|
@ -42,7 +42,7 @@ def _generate_reply(question, state, stopping_strings=None, is_chat=False, escap
|
||||
yield ''
|
||||
return
|
||||
|
||||
if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel', 'ExllamaModel', 'CtransformersModel']:
|
||||
if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel', 'ExllamaModel', 'Exllamav2Model', 'CtransformersModel']:
|
||||
generate_func = generate_reply_custom
|
||||
else:
|
||||
generate_func = generate_reply_HF
|
||||
@ -106,8 +106,9 @@ def _generate_reply(question, state, stopping_strings=None, is_chat=False, escap
|
||||
|
||||
|
||||
def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_length=None):
|
||||
if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel', 'CtransformersModel']:
|
||||
if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel', 'CtransformersModel', 'Exllamav2Model']:
|
||||
input_ids = shared.tokenizer.encode(str(prompt))
|
||||
if shared.model.__class__.__name__ not in ['Exllamav2Model']:
|
||||
input_ids = np.array(input_ids).reshape(1, len(input_ids))
|
||||
else:
|
||||
input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', add_special_tokens=add_special_tokens)
|
||||
@ -120,7 +121,7 @@ def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_lengt
|
||||
if truncation_length is not None:
|
||||
input_ids = input_ids[:, -truncation_length:]
|
||||
|
||||
if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel', 'ExllamaModel', 'CtransformersModel'] or shared.args.cpu:
|
||||
if shared.model.__class__.__name__ in ['LlamaCppModel', 'RWKVModel', 'ExllamaModel', 'Exllamav2Model', 'CtransformersModel'] or shared.args.cpu:
|
||||
return input_ids
|
||||
elif shared.args.deepspeed:
|
||||
return input_ids.to(device=local_rank)
|
||||
|
@ -8,7 +8,9 @@ accelerate==0.22.*
|
||||
colorama
|
||||
datasets
|
||||
einops
|
||||
exllamav2==0.0.0
|
||||
markdown
|
||||
ninja
|
||||
numpy==1.24
|
||||
optimum==1.12.0
|
||||
pandas
|
||||
|
@ -8,7 +8,9 @@ accelerate==0.22.*
|
||||
colorama
|
||||
datasets
|
||||
einops
|
||||
exllamav2==0.0.0
|
||||
markdown
|
||||
ninja
|
||||
numpy==1.24
|
||||
optimum==1.12.0
|
||||
pandas
|
||||
|
Loading…
Reference in New Issue
Block a user