mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2025-01-26 03:22:30 +01:00
ExLlama with long context (#2875)
This commit is contained in:
parent
9290c6236f
commit
c52290de50
@ -266,6 +266,8 @@ Optionally, you can use the following command-line flags:
|
||||
| Flag | Description |
|
||||
|------------------|-------------|
|
||||
|`--gpu-split` | Comma-separated list of VRAM (in GB) to use per GPU device for model layers, e.g. `20,7,7` |
|
||||
|`--max_seq_len MAX_SEQ_LEN` | Maximum sequence length. |
|
||||
|`--compress_pos_emb COMPRESS_POS_EMB` | Positional embeddings compression factor. Should typically be set to max_seq_len / 2048. |
|
||||
|
||||
#### GPTQ-for-LLaMa
|
||||
|
||||
|
@ -29,7 +29,6 @@ async def run(user_input, history):
|
||||
'regenerate': False,
|
||||
'_continue': False,
|
||||
'stop_at_newline': False,
|
||||
'chat_prompt_size': 2048,
|
||||
'chat_generation_attempts': 1,
|
||||
'chat-instruct_command': 'Continue the chat dialogue below. Write a single reply for the character "<|character|>".\n\n<|prompt|>',
|
||||
|
||||
|
@ -23,7 +23,6 @@ def run(user_input, history):
|
||||
'regenerate': False,
|
||||
'_continue': False,
|
||||
'stop_at_newline': False,
|
||||
'chat_prompt_size': 2048,
|
||||
'chat_generation_attempts': 1,
|
||||
'chat-instruct_command': 'Continue the chat dialogue below. Write a single reply for the character "<|character|>".\n\n<|prompt|>',
|
||||
|
||||
|
@ -53,7 +53,6 @@ def build_parameters(body, chat=False):
|
||||
name1_instruct, name2_instruct, _, _, context_instruct, turn_template = load_character_memoized(instruction_template, '', '', instruct=True)
|
||||
generate_params.update({
|
||||
'stop_at_newline': bool(body.get('stop_at_newline', shared.settings['stop_at_newline'])),
|
||||
'chat_prompt_size': int(body.get('chat_prompt_size', shared.settings['chat_prompt_size'])),
|
||||
'chat_generation_attempts': int(body.get('chat_generation_attempts', shared.settings['chat_generation_attempts'])),
|
||||
'mode': str(body.get('mode', 'chat')),
|
||||
'name1': name1,
|
||||
|
0
extensions/openai/cache_embedding_model.py
Executable file → Normal file
0
extensions/openai/cache_embedding_model.py
Executable file → Normal file
@ -104,12 +104,8 @@ llama-65b-gptq-3bit:
|
||||
mode: 'instruct'
|
||||
instruction_template: 'StableLM'
|
||||
truncation_length: 4096
|
||||
chat_prompt_size: 4096
|
||||
chat_prompt_size_max: 4096
|
||||
.*stablelm-base:
|
||||
truncation_length: 4096
|
||||
chat_prompt_size: 4096
|
||||
chat_prompt_size_max: 4096
|
||||
.*wizardlm:
|
||||
mode: 'instruct'
|
||||
model_type: 'llama'
|
||||
@ -237,8 +233,6 @@ TheBloke_WizardLM-30B-GPTQ:
|
||||
instruction_template: 'Minotaur'
|
||||
.*minotaur-15b:
|
||||
truncation_length: 8192
|
||||
chat_prompt_size: 8192
|
||||
chat_prompt_size_max: 8192
|
||||
.*orca_mini:
|
||||
mode: 'instruct'
|
||||
instruction_template: 'Orca Mini'
|
||||
|
@ -57,7 +57,7 @@ def generate_chat_prompt(user_input, state, **kwargs):
|
||||
is_instruct = state['mode'] == 'instruct'
|
||||
|
||||
# Find the maximum prompt size
|
||||
max_length = min(get_max_prompt_length(state), state['chat_prompt_size'])
|
||||
max_length = get_max_prompt_length(state)
|
||||
all_substrings = {
|
||||
'chat': get_turn_substrings(state, instruct=False),
|
||||
'instruct': get_turn_substrings(state, instruct=True)
|
||||
|
@ -46,6 +46,8 @@ class ExllamaModel:
|
||||
|
||||
config = ExLlamaConfig(str(model_config_path))
|
||||
config.model_path = str(model_path)
|
||||
config.max_seq_len = shared.args.max_seq_len
|
||||
config.compress_pos_emb = shared.args.compress_pos_emb
|
||||
if shared.args.gpu_split:
|
||||
config.set_auto_map(shared.args.gpu_split)
|
||||
config.gpu_peer_fix = True
|
||||
|
@ -91,7 +91,8 @@ class ExllamaHF(PreTrainedModel):
|
||||
assert weight_path is not None, f'could not find weight in "{pretrained_model_name_or_path}"'
|
||||
|
||||
config.model_path = str(weight_path)
|
||||
|
||||
config.max_seq_len = shared.args.max_seq_len
|
||||
config.compress_pos_emb = shared.args.compress_pos_emb
|
||||
if shared.args.gpu_split:
|
||||
config.set_auto_map(shared.args.gpu_split)
|
||||
config.gpu_peer_fix = True
|
||||
|
@ -55,10 +55,14 @@ loaders_and_params = {
|
||||
],
|
||||
'ExLlama' : [
|
||||
'gpu_split',
|
||||
'max_seq_len',
|
||||
'compress_pos_emb',
|
||||
'exllama_info',
|
||||
],
|
||||
'ExLlama_HF' : [
|
||||
'gpu_split',
|
||||
'max_seq_len',
|
||||
'compress_pos_emb',
|
||||
'exllama_HF_info',
|
||||
]
|
||||
}
|
||||
|
@ -51,15 +51,12 @@ settings = {
|
||||
'skip_special_tokens': True,
|
||||
'truncation_length': 2048,
|
||||
'truncation_length_min': 0,
|
||||
'truncation_length_max': 8192,
|
||||
'truncation_length_max': 16384,
|
||||
'mode': 'chat',
|
||||
'start_with': '',
|
||||
'chat_style': 'cai-chat',
|
||||
'instruction_template': 'None',
|
||||
'chat-instruct_command': 'Continue the chat dialogue below. Write a single reply for the character "<|character|>".\n\n<|prompt|>',
|
||||
'chat_prompt_size': 2048,
|
||||
'chat_prompt_size_min': 0,
|
||||
'chat_prompt_size_max': 8192,
|
||||
'chat_generation_attempts': 1,
|
||||
'chat_generation_attempts_min': 1,
|
||||
'chat_generation_attempts_max': 10,
|
||||
@ -152,6 +149,8 @@ parser.add_argument('--desc_act', action='store_true', help='For models that don
|
||||
|
||||
# ExLlama
|
||||
parser.add_argument('--gpu-split', type=str, help="Comma-separated list of VRAM (in GB) to use per GPU device for model layers, e.g. 20,7,7")
|
||||
parser.add_argument('--max_seq_len', type=int, default=2048, help="Maximum sequence length.")
|
||||
parser.add_argument('--compress_pos_emb', type=int, default=1, help="Positional embeddings compression factor. Should typically be set to max_seq_len / 2048.")
|
||||
|
||||
# FlexGen
|
||||
parser.add_argument('--flexgen', action='store_true', help='DEPRECATED')
|
||||
|
@ -30,7 +30,7 @@ theme = gr.themes.Default(
|
||||
|
||||
|
||||
def list_model_elements():
|
||||
elements = ['loader', 'cpu_memory', 'auto_devices', 'disk', 'cpu', 'bf16', 'load_in_8bit', 'trust_remote_code', 'load_in_4bit', 'compute_dtype', 'quant_type', 'use_double_quant', 'wbits', 'groupsize', 'model_type', 'pre_layer', 'triton', 'desc_act', 'no_inject_fused_attention', 'no_inject_fused_mlp', 'no_use_cuda_fp16', 'threads', 'n_batch', 'no_mmap', 'mlock', 'n_gpu_layers', 'n_ctx', 'llama_cpp_seed', 'gpu_split']
|
||||
elements = ['loader', 'cpu_memory', 'auto_devices', 'disk', 'cpu', 'bf16', 'load_in_8bit', 'trust_remote_code', 'load_in_4bit', 'compute_dtype', 'quant_type', 'use_double_quant', 'wbits', 'groupsize', 'model_type', 'pre_layer', 'triton', 'desc_act', 'no_inject_fused_attention', 'no_inject_fused_mlp', 'no_use_cuda_fp16', 'threads', 'n_batch', 'no_mmap', 'mlock', 'n_gpu_layers', 'n_ctx', 'llama_cpp_seed', 'gpu_split', 'max_seq_len', 'compress_pos_emb']
|
||||
for i in range(torch.cuda.device_count()):
|
||||
elements.append(f'gpu_memory_{i}')
|
||||
|
||||
@ -40,7 +40,7 @@ def list_model_elements():
|
||||
def list_interface_input_elements(chat=False):
|
||||
elements = ['max_new_tokens', 'seed', 'temperature', 'top_p', 'top_k', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', 'encoder_repetition_penalty', 'no_repeat_ngram_size', 'min_length', 'do_sample', 'penalty_alpha', 'num_beams', 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'add_bos_token', 'ban_eos_token', 'truncation_length', 'custom_stopping_strings', 'skip_special_tokens', 'preset_menu', 'stream', 'tfs', 'top_a']
|
||||
if chat:
|
||||
elements += ['name1', 'name2', 'greeting', 'context', 'chat_prompt_size', 'chat_generation_attempts', 'stop_at_newline', 'mode', 'instruction_template', 'character_menu', 'name1_instruct', 'name2_instruct', 'context_instruct', 'turn_template', 'chat_style', 'chat-instruct_command']
|
||||
elements += ['name1', 'name2', 'greeting', 'context', 'chat_generation_attempts', 'stop_at_newline', 'mode', 'instruction_template', 'character_menu', 'name1_instruct', 'name2_instruct', 'context_instruct', 'turn_template', 'chat_style', 'chat-instruct_command']
|
||||
|
||||
elements += list_model_elements()
|
||||
return elements
|
||||
|
@ -216,13 +216,15 @@ def create_model_menus():
|
||||
shared.gradio['threads'] = gr.Slider(label="threads", minimum=0, step=1, maximum=32, value=shared.args.threads)
|
||||
shared.gradio['n_batch'] = gr.Slider(label="n_batch", minimum=1, maximum=2048, value=shared.args.n_batch)
|
||||
shared.gradio['n_gpu_layers'] = gr.Slider(label="n-gpu-layers", minimum=0, maximum=128, value=shared.args.n_gpu_layers)
|
||||
shared.gradio['n_ctx'] = gr.Slider(minimum=0, maximum=8192, step=1, label="n_ctx", value=shared.args.n_ctx)
|
||||
shared.gradio['n_ctx'] = gr.Slider(minimum=0, maximum=16384, step=256, label="n_ctx", value=shared.args.n_ctx)
|
||||
shared.gradio['wbits'] = gr.Dropdown(label="wbits", choices=["None", 1, 2, 3, 4, 8], value=shared.args.wbits if shared.args.wbits > 0 else "None")
|
||||
shared.gradio['groupsize'] = gr.Dropdown(label="groupsize", choices=["None", 32, 64, 128, 1024], value=shared.args.groupsize if shared.args.groupsize > 0 else "None")
|
||||
shared.gradio['model_type'] = gr.Dropdown(label="model_type", choices=["None", "llama", "opt", "gptj"], value=shared.args.model_type or "None")
|
||||
shared.gradio['pre_layer'] = gr.Slider(label="pre_layer", minimum=0, maximum=100, value=shared.args.pre_layer[0] if shared.args.pre_layer is not None else 0)
|
||||
shared.gradio['autogptq_info'] = gr.Markdown('On some systems, AutoGPTQ can be 2x slower than GPTQ-for-LLaMa. You can manually select the GPTQ-for-LLaMa loader above.')
|
||||
shared.gradio['gpu_split'] = gr.Textbox(label='gpu-split', info='Comma-separated list of VRAM (in GB) to use per GPU. Example: 20,7,7')
|
||||
shared.gradio['max_seq_len'] = gr.Slider(label='max_seq_len', minimum=2048, maximum=16384, step=256, info='Maximum sequence length.')
|
||||
shared.gradio['compress_pos_emb'] = gr.Slider(label='compress_pos_emb', minimum=1, maximum=8, step=1, info='Positional embeddings compression factor. Should typically be set to max_seq_len / 2048.')
|
||||
|
||||
with gr.Column():
|
||||
shared.gradio['triton'] = gr.Checkbox(label="triton", value=shared.args.triton)
|
||||
@ -300,10 +302,9 @@ def create_chat_settings_menus():
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
|
||||
shared.gradio['chat_prompt_size'] = gr.Slider(minimum=shared.settings['chat_prompt_size_min'], maximum=shared.settings['chat_prompt_size_max'], step=1, label='chat_prompt_size', info='Set limit on prompt size by removing old messages (while retaining context and user input)', value=shared.settings['chat_prompt_size'])
|
||||
shared.gradio['chat_generation_attempts'] = gr.Slider(minimum=shared.settings['chat_generation_attempts_min'], maximum=shared.settings['chat_generation_attempts_max'], value=shared.settings['chat_generation_attempts'], step=1, label='Generation attempts (for longer replies)', info='New generations will be called until either this number is reached or no new content is generated between two iterations.')
|
||||
|
||||
with gr.Column():
|
||||
shared.gradio['chat_generation_attempts'] = gr.Slider(minimum=shared.settings['chat_generation_attempts_min'], maximum=shared.settings['chat_generation_attempts_max'], value=shared.settings['chat_generation_attempts'], step=1, label='Generation attempts (for longer replies)', info='New generations will be called until either this number is reached or no new content is generated between two iterations.')
|
||||
shared.gradio['stop_at_newline'] = gr.Checkbox(value=shared.settings['stop_at_newline'], label='Stop generating at new line character')
|
||||
|
||||
|
||||
@ -366,7 +367,7 @@ def create_settings_menus(default_preset):
|
||||
with gr.Box():
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
shared.gradio['truncation_length'] = gr.Slider(value=shared.settings['truncation_length'], minimum=shared.settings['truncation_length_min'], maximum=shared.settings['truncation_length_max'], step=1, label='Truncate the prompt up to this length', info='The leftmost tokens are removed if the prompt exceeds this length. Most models require this to be at most 2048.')
|
||||
shared.gradio['truncation_length'] = gr.Slider(value=shared.settings['truncation_length'], minimum=shared.settings['truncation_length_min'], maximum=shared.settings['truncation_length_max'], step=256, label='Truncate the prompt up to this length', info='The leftmost tokens are removed if the prompt exceeds this length. Most models require this to be at most 2048.')
|
||||
shared.gradio['custom_stopping_strings'] = gr.Textbox(lines=1, value=shared.settings["custom_stopping_strings"] or None, label='Custom stopping strings', info='In addition to the defaults. Written between "" and separated by commas. For instance: "\\nYour Assistant:", "\\nThe assistant:"')
|
||||
with gr.Column():
|
||||
shared.gradio['ban_eos_token'] = gr.Checkbox(value=shared.settings['ban_eos_token'], label='Ban the eos_token', info='Forces the model to never end the generation prematurely.')
|
||||
|
@ -20,7 +20,7 @@ ban_eos_token: false
|
||||
skip_special_tokens: true
|
||||
truncation_length: 2048
|
||||
truncation_length_min: 0
|
||||
truncation_length_max: 8192
|
||||
truncation_length_max: 16384
|
||||
mode: chat
|
||||
start_with: ''
|
||||
chat_style: cai-chat
|
||||
@ -30,9 +30,6 @@ chat-instruct_command: 'Continue the chat dialogue below. Write a single reply f
|
||||
|
||||
|
||||
<|prompt|>'
|
||||
chat_prompt_size: 2048
|
||||
chat_prompt_size_min: 0
|
||||
chat_prompt_size_max: 8192
|
||||
chat_generation_attempts: 1
|
||||
chat_generation_attempts_min: 1
|
||||
chat_generation_attempts_max: 10
|
||||
|
Loading…
Reference in New Issue
Block a user