mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-25 17:29:22 +01:00
Add support for presets
This commit is contained in:
parent
874cd6ff3f
commit
c65bad40dc
@ -63,6 +63,10 @@ If I get enough ⭐s on this repository, I will make the process of loading mode
|
|||||||
|
|
||||||
Then browse to `http://localhost:7860/?__theme=dark`
|
Then browse to `http://localhost:7860/?__theme=dark`
|
||||||
|
|
||||||
|
## Presets
|
||||||
|
|
||||||
|
Inference settings presets can be created under `presets/` as text files. These files are detected automatically at startup.
|
||||||
|
|
||||||
## Contributing
|
## Contributing
|
||||||
|
|
||||||
Pull requests are welcome.
|
Pull requests are welcome.
|
||||||
|
5
presets/Default.txt
Normal file
5
presets/Default.txt
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
do_sample=True,
|
||||||
|
max_new_tokens=max_length,
|
||||||
|
top_p=1,
|
||||||
|
typical_p=0.3,
|
||||||
|
temperature=temperature,
|
10
presets/Verbose.txt
Normal file
10
presets/Verbose.txt
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
num_beams=10,
|
||||||
|
min_length=max_length,
|
||||||
|
max_new_tokens=max_length,
|
||||||
|
length_penalty =1.4,
|
||||||
|
no_repeat_ngram_size=2,
|
||||||
|
early_stopping=True,
|
||||||
|
temperature=0.7,
|
||||||
|
top_k=150,
|
||||||
|
top_p=0.92,
|
||||||
|
repetition_penalty=4.5,
|
39
server.py
39
server.py
@ -1,5 +1,6 @@
|
|||||||
import time
|
|
||||||
import re
|
import re
|
||||||
|
import time
|
||||||
|
import glob
|
||||||
import torch
|
import torch
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
import transformers
|
import transformers
|
||||||
@ -16,6 +17,8 @@ model_name = 'galactica-6.7b'
|
|||||||
#model_name = 'flan-t5'
|
#model_name = 'flan-t5'
|
||||||
#model_name = 'OPT-13B-Erebus'
|
#model_name = 'OPT-13B-Erebus'
|
||||||
|
|
||||||
|
settings_name = "Default"
|
||||||
|
|
||||||
def load_model(model_name):
|
def load_model(model_name):
|
||||||
print(f"Loading {model_name}")
|
print(f"Loading {model_name}")
|
||||||
|
|
||||||
@ -48,7 +51,7 @@ def fix_gpt4chan(s):
|
|||||||
return s
|
return s
|
||||||
|
|
||||||
def fn(question, temperature, max_length, inference_settings, selected_model):
|
def fn(question, temperature, max_length, inference_settings, selected_model):
|
||||||
global model, tokenizer, model_name
|
global model, tokenizer, model_name, settings_name
|
||||||
|
|
||||||
if selected_model != model_name:
|
if selected_model != model_name:
|
||||||
model_name = selected_model
|
model_name = selected_model
|
||||||
@ -56,35 +59,17 @@ def fn(question, temperature, max_length, inference_settings, selected_model):
|
|||||||
tokenier = None
|
tokenier = None
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
model, tokenizer = load_model(model_name)
|
model, tokenizer = load_model(model_name)
|
||||||
|
if inference_settings != settings_name:
|
||||||
|
with open(f'presets/{inference_settings}.txt', 'r') as infile:
|
||||||
|
preset = infile.read()
|
||||||
|
settings_name = inference_settings
|
||||||
|
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
input_text = question
|
input_text = question
|
||||||
input_ids = tokenizer.encode(str(input_text), return_tensors='pt').cuda()
|
input_ids = tokenizer.encode(str(input_text), return_tensors='pt').cuda()
|
||||||
|
|
||||||
if inference_settings == 'Default':
|
|
||||||
output = model.generate(
|
output = eval(f"model.generate(input_ids, {preset}).cuda()")
|
||||||
input_ids,
|
|
||||||
do_sample=True,
|
|
||||||
max_new_tokens=max_length,
|
|
||||||
#max_length=max_length+len(input_ids[0]),
|
|
||||||
top_p=1,
|
|
||||||
typical_p=0.3,
|
|
||||||
temperature=temperature,
|
|
||||||
).cuda()
|
|
||||||
elif inference_settings == 'Verbose':
|
|
||||||
output = model.generate(
|
|
||||||
input_ids,
|
|
||||||
num_beams=10,
|
|
||||||
min_length=max_length,
|
|
||||||
max_new_tokens=max_length,
|
|
||||||
length_penalty =1.4,
|
|
||||||
no_repeat_ngram_size=2,
|
|
||||||
early_stopping=True,
|
|
||||||
temperature=0.7,
|
|
||||||
top_k=150,
|
|
||||||
top_p=0.92,
|
|
||||||
repetition_penalty=4.5,
|
|
||||||
).cuda()
|
|
||||||
|
|
||||||
reply = tokenizer.decode(output[0], skip_special_tokens=True)
|
reply = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||||
if model_name.startswith('gpt4chan'):
|
if model_name.startswith('gpt4chan'):
|
||||||
@ -104,7 +89,7 @@ interface = gr.Interface(
|
|||||||
gr.Textbox(value=default_text, lines=15),
|
gr.Textbox(value=default_text, lines=15),
|
||||||
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Temperature', value=0.7),
|
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Temperature', value=0.7),
|
||||||
gr.Slider(minimum=1, maximum=2000, step=1, label='max_length', value=200),
|
gr.Slider(minimum=1, maximum=2000, step=1, label='max_length', value=200),
|
||||||
gr.Dropdown(choices=["Default", "Verbose"], value="Default"),
|
gr.Dropdown(choices=list(map(lambda x : x.split('/')[-1].split('.')[0], glob.glob("presets/*.txt"))), value="Default"),
|
||||||
gr.Dropdown(choices=["gpt4chan_model_float16", "galactica-6.7b", "opt-6.7b", "opt-13b", "gpt-neox-20b", "gpt-j-6B-float16", "flan-t5", "bloomz-7b1-p3", "OPT-13B-Erebus"], value=model_name),
|
gr.Dropdown(choices=["gpt4chan_model_float16", "galactica-6.7b", "opt-6.7b", "opt-13b", "gpt-neox-20b", "gpt-j-6B-float16", "flan-t5", "bloomz-7b1-p3", "OPT-13B-Erebus"], value=model_name),
|
||||||
],
|
],
|
||||||
outputs=[
|
outputs=[
|
||||||
|
Loading…
Reference in New Issue
Block a user