From c8207d474f9c5365ab5a1c269eb71bff05a31988 Mon Sep 17 00:00:00 2001 From: Maya Eary Date: Tue, 28 Mar 2023 20:38:55 +0300 Subject: [PATCH] Generalized load_quantized --- modules/GPTQ_loader.py | 54 ++++++++++++++++++++++++++++++++++-------- 1 file changed, 44 insertions(+), 10 deletions(-) diff --git a/modules/GPTQ_loader.py b/modules/GPTQ_loader.py index afb5695f..351d658d 100644 --- a/modules/GPTQ_loader.py +++ b/modules/GPTQ_loader.py @@ -4,13 +4,48 @@ from pathlib import Path import accelerate import torch +import transformers +from transformers import AutoConfig, AutoModelForCausalLM import modules.shared as shared sys.path.insert(0, str(Path("repositories/GPTQ-for-LLaMa"))) -import llama import llama_inference_offload -import opt +from quant import make_quant +from modelutils import find_layers + +def _load_quant(model, checkpoint, wbits, groupsize=-1, faster_kernel=False, exclude_layers=['lm_head']): + config = AutoConfig.from_pretrained(model) + def noop(*args, **kwargs): + pass + torch.nn.init.kaiming_uniform_ = noop + torch.nn.init.uniform_ = noop + torch.nn.init.normal_ = noop + + torch.set_default_dtype(torch.half) + transformers.modeling_utils._init_weights = False + torch.set_default_dtype(torch.half) + model = AutoModelForCausalLM.from_config(config) + torch.set_default_dtype(torch.float) + model = model.eval() + layers = find_layers(model) + for name in exclude_layers: + if name in layers: + del layers[name] + make_quant(model, layers, wbits, groupsize, faster=faster_kernel) + + del layers + + print('Loading model ...') + if checkpoint.endswith('.safetensors'): + from safetensors.torch import load_file as safe_load + model.load_state_dict(safe_load(checkpoint)) + else: + model.load_state_dict(torch.load(checkpoint)) + model.seqlen = 2048 + print('Done.') + + return model def load_quantized(model_name): @@ -20,6 +55,8 @@ def load_quantized(model_name): model_type = 'llama' elif model_name.lower().startswith(('opt', 'galactica')): model_type = 'opt' + elif model_name.lower().startswith(('gpt-j', 'pygmalion-6b')): + model_type = 'gptj' else: print("Can't determine model type from model name. Please specify it manually using --model_type " "argument") @@ -27,15 +64,12 @@ def load_quantized(model_name): else: model_type = shared.args.model_type.lower() - if model_type == 'llama': - if not shared.args.pre_layer: - load_quant = llama.load_quant - else: - load_quant = llama_inference_offload.load_quant - elif model_type == 'opt': - load_quant = opt.load_quant + if model_type == 'llama' and shared.args.pre_layer: + oad_quant = llama_inference_offload.load_quant + elif model_type in ('llama', 'opt', 'gptj'): + load_quant = _load_quant else: - print("Unknown pre-quantized model type specified. Only 'llama' and 'opt' are supported") + print("Unknown pre-quantized model type specified. Only 'llama', 'opt' and 'gptj' are supported") exit() # Now we are going to try to locate the quantized model file.