Make llama.cpp read prompt size and seed from settings (#2299)

This commit is contained in:
DGdev91 2023-05-25 15:29:31 +02:00 committed by GitHub
parent ee674afa50
commit cf088566f8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 9 additions and 3 deletions

View File

@ -242,6 +242,8 @@ Optionally, you can use the following command-line flags:
| `--mlock` | Force the system to keep the model in RAM. |
| `--cache-capacity CACHE_CAPACITY` | Maximum cache capacity. Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed. |
| `--n-gpu-layers N_GPU_LAYERS` | Number of layers to offload to the GPU. Only works if llama-cpp-python was compiled with BLAS. Set this to 1000000000 to offload all layers to the GPU. |
| `--n_ctx N_CTX` | Size of the prompt context. |
| `--llama_cpp_seed SEED` | Seed for llama-cpp models. Default 0 (random). |
#### GPTQ

View File

@ -39,8 +39,8 @@ class LlamaCppModel:
params = {
'model_path': str(path),
'n_ctx': 2048,
'seed': 0,
'n_ctx': shared.args.n_ctx,
'seed': int(shared.args.llama_cpp_seed),
'n_threads': shared.args.threads or None,
'n_batch': shared.args.n_batch,
'use_mmap': not shared.args.no_mmap,

View File

@ -134,6 +134,8 @@ parser.add_argument('--no-mmap', action='store_true', help='Prevent mmap from be
parser.add_argument('--mlock', action='store_true', help='Force the system to keep the model in RAM.')
parser.add_argument('--cache-capacity', type=str, help='Maximum cache capacity. Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed.')
parser.add_argument('--n-gpu-layers', type=int, default=0, help='Number of layers to offload to the GPU.')
parser.add_argument('--n_ctx', type=int, default=2048, help='Size of the prompt context.')
parser.add_argument('--llama_cpp_seed', type=int, default=0, help='Seed for llama-cpp models. Default 0 (random)')
# GPTQ
parser.add_argument('--wbits', type=int, default=0, help='Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported.')

View File

@ -30,7 +30,7 @@ theme = gr.themes.Default(
def list_model_elements():
elements = ['cpu_memory', 'auto_devices', 'disk', 'cpu', 'bf16', 'load_in_8bit', 'load_in_4bit', 'compute_dtype', 'quant_type', 'use_double_quant', 'wbits', 'groupsize', 'model_type', 'pre_layer', 'threads', 'n_batch', 'no_mmap', 'mlock', 'n_gpu_layers']
elements = ['cpu_memory', 'auto_devices', 'disk', 'cpu', 'bf16', 'load_in_8bit', 'load_in_4bit', 'compute_dtype', 'quant_type', 'use_double_quant', 'wbits', 'groupsize', 'model_type', 'pre_layer', 'threads', 'n_batch', 'no_mmap', 'mlock', 'n_gpu_layers', 'n_ctx', 'llama_cpp_seed']
for i in range(torch.cuda.device_count()):
elements.append(f'gpu_memory_{i}')

View File

@ -404,10 +404,12 @@ def create_model_menus():
shared.gradio['threads'] = gr.Slider(label="threads", minimum=0, step=1, maximum=32, value=shared.args.threads)
shared.gradio['n_batch'] = gr.Slider(label="n_batch", minimum=1, maximum=2048, value=shared.args.n_batch)
shared.gradio['n_gpu_layers'] = gr.Slider(label="n-gpu-layers", minimum=0, maximum=128, value=shared.args.n_gpu_layers)
shared.gradio['n_ctx'] = gr.Slider(0, 8192, label="n_ctx", value=shared.args.n_ctx)
with gr.Column():
shared.gradio['no_mmap'] = gr.Checkbox(label="no-mmap", value=shared.args.no_mmap)
shared.gradio['mlock'] = gr.Checkbox(label="mlock", value=shared.args.mlock)
shared.gradio['llama_cpp_seed'] = gr.Number(label='Seed (0 for random)', value=shared.args.llama_cpp_seed)
with gr.Row():
shared.gradio['model_status'] = gr.Markdown('No model is loaded' if shared.model_name == 'None' else 'Ready')