Make the RWKV model cache the RNN state between messages (#1354)

This commit is contained in:
Maks 2023-05-09 16:12:53 +02:00 committed by GitHub
parent 641500dcb9
commit cf6caf1830
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,3 +1,4 @@
import copy
import os import os
from pathlib import Path from pathlib import Path
@ -32,6 +33,10 @@ class RWKVModel:
result = self() result = self()
result.pipeline = pipeline result.pipeline = pipeline
result.model = model
result.cached_context = ""
result.cached_model_state = None
result.cached_output_logits = None
return result return result
def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=None, alpha_frequency=0.1, alpha_presence=0.1, token_ban=None, token_stop=None, callback=None): def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=None, alpha_frequency=0.1, alpha_presence=0.1, token_ban=None, token_stop=None, callback=None):
@ -45,7 +50,17 @@ class RWKVModel:
token_stop=token_stop or [] token_stop=token_stop or []
) )
return self.pipeline.generate(context, token_count=token_count, args=args, callback=callback) if self.cached_context != "":
if context.startswith(self.cached_context):
context = context[len(self.cached_context):]
else:
self.cached_context = ""
self.cached_model_state = None
self.cached_output_logits = None
# out = self.pipeline.generate(context, token_count=token_count, args=args, callback=callback)
out = self.generate_from_cached_state(context, token_count=token_count, args=args, callback=callback)
return out
def generate_with_streaming(self, **kwargs): def generate_with_streaming(self, **kwargs):
with Iteratorize(self.generate, kwargs, callback=None) as generator: with Iteratorize(self.generate, kwargs, callback=None) as generator:
@ -54,6 +69,61 @@ class RWKVModel:
reply += token reply += token
yield reply yield reply
# Similar to the PIPELINE.generate, but lets us maintain the cached_model_state
def generate_from_cached_state(self, ctx="", token_count=20, args=None, callback=None):
all_tokens = []
out_str = ''
occurrence = {}
state = copy.deepcopy(self.cached_model_state) if self.cached_model_state is not None else None
# if we ended up with an empty context, just reuse the cached logits
# this can happen if a user undoes a message and then sends the exact message again
# in that case the full context ends up being the same as the cached_context, so the remaining context is empty.
if ctx == "":
out = self.cached_output_logits
for i in range(token_count):
# forward
tokens = self.pipeline.encode(ctx) if i == 0 else [token]
while len(tokens) > 0:
out, state = self.model.forward(tokens[:args.chunk_len], state)
tokens = tokens[args.chunk_len:]
# cache the model state after scanning the context
# we don't cache the state after processing our own generated tokens because
# the output string might be post-processed arbitrarily. Therefore, what's fed into the model
# on the next round of chat might be slightly different what what it output on the previous round
if i == 0:
self.cached_context += ctx
self.cached_model_state = copy.deepcopy(state)
self.cached_output_logits = copy.deepcopy(out)
# adjust probabilities
for n in args.token_ban:
out[n] = -float('inf')
for n in occurrence:
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
# sampler
token = self.pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p, top_k=args.top_k)
if token in args.token_stop:
break
all_tokens += [token]
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
# output
tmp = self.pipeline.decode([token])
if '\ufffd' not in tmp: # is valid utf-8 string?
if callback:
callback(tmp)
out_str += tmp
return out_str
class RWKVTokenizer: class RWKVTokenizer:
def __init__(self): def __init__(self):