mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-25 17:29:22 +01:00
Fix evaluate comment saving
This commit is contained in:
parent
5e023ae64d
commit
d46b9b7c50
@ -24,6 +24,8 @@ past_evaluations = load_past_evaluations()
|
||||
|
||||
|
||||
def save_past_evaluations(df):
|
||||
global past_evaluations
|
||||
past_evaluations = df
|
||||
df.to_csv(Path('logs/evaluations.csv'), index=False)
|
||||
|
||||
|
||||
|
@ -123,6 +123,7 @@ parser.add_argument('--wbits', type=int, default=0, help='Load a pre-quantized m
|
||||
parser.add_argument('--model_type', type=str, help='Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported.')
|
||||
parser.add_argument('--groupsize', type=int, default=-1, help='Group size.')
|
||||
parser.add_argument('--pre_layer', type=int, default=0, help='The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models.')
|
||||
parser.add_argument('--file-path', type=int, default=0, help='Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported.')
|
||||
parser.add_argument('--monkey-patch', action='store_true', help='Apply the monkey patch for using LoRAs with quantized models.')
|
||||
parser.add_argument('--no-quant_attn', action='store_true', help='(triton) Disable quant attention. If you encounter incoherent results try disabling this.')
|
||||
parser.add_argument('--no-warmup_autotune', action='store_true', help='(triton) Disable warmup autotune.')
|
||||
|
@ -112,7 +112,7 @@ def create_train_interface():
|
||||
evaluate_text_file = gr.Dropdown(choices=['wikitext', 'ptb', 'ptb_new'] + get_datasets('training/datasets', 'txt')[1:], value='wikitext', label='Input dataset', info='The raw text file on which the model will be evaluated. The first options are automatically downloaded: wikitext, ptb, and ptb_new. The next options are your local text files under training/datasets.')
|
||||
with gr.Row():
|
||||
stride_length = gr.Slider(label='Stride', minimum=1, maximum=2048, value=512, step=1, info='Used to make the evaluation faster at the cost of accuracy. 1 = slowest but most accurate. 512 is a common value.')
|
||||
max_length = gr.Slider(label='max_length', minimum=1, maximum=8096, value=0, step=1, info='The context for each evaluation. If set to 0, the maximum context length for the model will be used.')
|
||||
max_length = gr.Slider(label='max_length', minimum=0, maximum=8096, value=0, step=1, info='The context for each evaluation. If set to 0, the maximum context length for the model will be used.')
|
||||
|
||||
with gr.Row():
|
||||
start_current_evaluation = gr.Button("Evaluate loaded model")
|
||||
|
Loading…
Reference in New Issue
Block a user