mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-25 17:29:22 +01:00
Merge pull request #76 from SillyLossy/main
Use BLIP to send a picture to model
This commit is contained in:
commit
d4d90a8000
14
modules/bot_picture.py
Normal file
14
modules/bot_picture.py
Normal file
@ -0,0 +1,14 @@
|
||||
import requests
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import BlipForConditionalGeneration
|
||||
from transformers import BlipProcessor
|
||||
|
||||
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
||||
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float16).to("cuda")
|
||||
|
||||
# raw_image = Image.open('/tmp/istockphoto-470604022-612x612.jpg').convert('RGB')
|
||||
def caption_image(raw_image):
|
||||
inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
|
||||
out = model.generate(**inputs, max_new_tokens=100)
|
||||
return processor.decode(out[0], skip_special_tokens=True)
|
@ -217,6 +217,12 @@ def generate_chat_html(history, name1, name2, character):
|
||||
|
||||
.body {
|
||||
}
|
||||
|
||||
.body img {
|
||||
max-width: 300px;
|
||||
max-height: 300px;
|
||||
border-radius: 20px;
|
||||
}
|
||||
"""
|
||||
|
||||
output = ''
|
||||
|
47
server.py
47
server.py
@ -23,6 +23,7 @@ from tqdm import tqdm
|
||||
from transformers import AutoConfig
|
||||
from transformers import AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
from io import BytesIO
|
||||
|
||||
from modules.html_generator import *
|
||||
from modules.stopping_criteria import _SentinelTokenStoppingCriteria
|
||||
@ -53,6 +54,7 @@ parser.add_argument('--listen', action='store_true', help='Make the web UI reach
|
||||
parser.add_argument('--listen-port', type=int, help='The listening port that the server will use.')
|
||||
parser.add_argument('--share', action='store_true', help='Create a public URL. This is useful for running the web UI on Google Colab or similar.')
|
||||
parser.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.')
|
||||
parser.add_argument('--picture', action='store_true', help='Adds an ability to send pictures in chat UI modes.')
|
||||
args = parser.parse_args()
|
||||
|
||||
if (args.chat or args.cai_chat) and not args.no_stream:
|
||||
@ -97,6 +99,9 @@ if args.deepspeed:
|
||||
ds_config = generate_ds_config(args.bf16, 1 * world_size, args.nvme_offload_dir)
|
||||
dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
|
||||
|
||||
if args.picture and (args.cai_chat or args.chat):
|
||||
import modules.bot_picture as bot_picture
|
||||
|
||||
def load_model(model_name):
|
||||
print(f"Loading {model_name}...")
|
||||
t0 = time.time()
|
||||
@ -561,8 +566,12 @@ def extract_message_from_reply(question, reply, current, other, check, extension
|
||||
|
||||
return reply, next_character_found, substring_found
|
||||
|
||||
def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
|
||||
original_text = text
|
||||
def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture=None):
|
||||
if args.picture and picture is not None:
|
||||
text, visible_text = generate_chat_picture(picture, name1, name2)
|
||||
else:
|
||||
visible_text = text
|
||||
|
||||
text = apply_extensions(text, "input")
|
||||
question = generate_chat_prompt(text, tokens, name1, name2, context, history_size)
|
||||
history['internal'].append(['', ''])
|
||||
@ -571,14 +580,14 @@ def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p,
|
||||
for reply in generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name1}:"):
|
||||
reply, next_character_found, substring_found = extract_message_from_reply(question, reply, name2, name1, check, extensions=True)
|
||||
history['internal'][-1] = [text, reply]
|
||||
history['visible'][-1] = [original_text, apply_extensions(reply, "output")]
|
||||
history['visible'][-1] = [visible_text, apply_extensions(reply, "output")]
|
||||
if not substring_found:
|
||||
yield history['visible']
|
||||
if next_character_found:
|
||||
break
|
||||
yield history['visible']
|
||||
|
||||
def impersonate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
|
||||
def impersonate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture=None):
|
||||
question = generate_chat_prompt(text, tokens, name1, name2, context, history_size, impersonate=True)
|
||||
eos_token = '\n' if check else None
|
||||
for reply in generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name2}:"):
|
||||
@ -589,19 +598,19 @@ def impersonate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, to
|
||||
break
|
||||
yield apply_extensions(reply, "output")
|
||||
|
||||
def cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
|
||||
for _history in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
|
||||
def cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture=None):
|
||||
for _history in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
|
||||
yield generate_chat_html(_history, name1, name2, character)
|
||||
|
||||
def regenerate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
|
||||
def regenerate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture=None):
|
||||
last = history['visible'].pop()
|
||||
history['internal'].pop()
|
||||
text = last[0]
|
||||
if args.cai_chat:
|
||||
for i in cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
|
||||
for i in cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
|
||||
yield i
|
||||
else:
|
||||
for i in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size):
|
||||
for i in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
|
||||
yield i
|
||||
|
||||
def remove_last_message(name1, name2):
|
||||
@ -791,6 +800,14 @@ def upload_your_profile_picture(img):
|
||||
img.save(Path(f'img_me.png'))
|
||||
print(f'Profile picture saved to "img_me.png"')
|
||||
|
||||
def generate_chat_picture(picture, name1, name2):
|
||||
text = f'*{name1} sends {name2} a picture that contains the following: "{bot_picture.caption_image(picture)}"*'
|
||||
buffer = BytesIO()
|
||||
picture.save(buffer, format="JPEG")
|
||||
img_str = base64.b64encode(buffer.getvalue()).decode('utf-8')
|
||||
visible_text = f'<img src="data:image/jpeg;base64,{img_str}">'
|
||||
return text, visible_text
|
||||
|
||||
# Global variables
|
||||
available_models = get_available_models()
|
||||
available_presets = get_available_presets()
|
||||
@ -861,6 +878,9 @@ if args.chat or args.cai_chat:
|
||||
with gr.Row():
|
||||
buttons["Send last reply to input"] = gr.Button("Send last reply to input")
|
||||
buttons["Replace last reply"] = gr.Button("Replace last reply")
|
||||
if args.picture:
|
||||
with gr.Row():
|
||||
picture_select = gr.Image(label="Send a picture", type='pil')
|
||||
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
@ -907,12 +927,18 @@ if args.chat or args.cai_chat:
|
||||
create_extensions_block()
|
||||
|
||||
input_params = [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size_slider]
|
||||
if args.picture:
|
||||
input_params.append(picture_select)
|
||||
if args.cai_chat:
|
||||
gen_events.append(buttons["Generate"].click(cai_chatbot_wrapper, input_params, display, show_progress=args.no_stream, api_name="textgen"))
|
||||
gen_events.append(textbox.submit(cai_chatbot_wrapper, input_params, display, show_progress=args.no_stream))
|
||||
if args.picture:
|
||||
picture_select.upload(cai_chatbot_wrapper, input_params, display, show_progress=args.no_stream)
|
||||
else:
|
||||
gen_events.append(buttons["Generate"].click(chatbot_wrapper, input_params, display, show_progress=args.no_stream, api_name="textgen"))
|
||||
gen_events.append(textbox.submit(chatbot_wrapper, input_params, display, show_progress=args.no_stream))
|
||||
if args.picture:
|
||||
picture_select.upload(chatbot_wrapper, input_params, display, show_progress=args.no_stream)
|
||||
gen_events.append(buttons["Regenerate"].click(regenerate_wrapper, input_params, display, show_progress=args.no_stream))
|
||||
gen_events.append(buttons["Impersonate"].click(impersonate_wrapper, input_params, textbox, show_progress=args.no_stream))
|
||||
|
||||
@ -925,11 +951,14 @@ if args.chat or args.cai_chat:
|
||||
buttons["Upload character"].click(upload_character, [upload_char, upload_img], [character_menu])
|
||||
for i in ["Generate", "Regenerate", "Replace last reply"]:
|
||||
buttons[i].click(lambda x: "", textbox, textbox, show_progress=False)
|
||||
|
||||
textbox.submit(lambda x: "", textbox, textbox, show_progress=False)
|
||||
character_menu.change(load_character, [character_menu, name1, name2], [name2, context, display])
|
||||
upload_img_tavern.upload(upload_tavern_character, [upload_img_tavern, name1, name2], [character_menu])
|
||||
upload.upload(load_history, [upload, name1, name2], [])
|
||||
upload_img_me.upload(upload_your_profile_picture, [upload_img_me], [])
|
||||
if args.picture:
|
||||
picture_select.upload(lambda : None, [], [picture_select], show_progress=False)
|
||||
|
||||
if args.cai_chat:
|
||||
upload.upload(redraw_html, [name1, name2], [display])
|
||||
|
Loading…
Reference in New Issue
Block a user