Implement CFG for ExLlama_HF (#3666)

This commit is contained in:
oobabooga 2023-08-24 16:27:36 -03:00 committed by GitHub
parent 2b675533f7
commit d6934bc7bc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 122 additions and 26 deletions

View File

@ -304,6 +304,7 @@ Optionally, you can use the following command-line flags:
|------------------|-------------|
|`--gpu-split` | Comma-separated list of VRAM (in GB) to use per GPU device for model layers, e.g. `20,7,7` |
|`--max_seq_len MAX_SEQ_LEN` | Maximum sequence length. |
|`--cfg-cache` | ExLlama_HF: Create an additional cache for CFG negative prompts. Necessary to use CFG with that loader, but not necessary for CFG with base ExLlama. |
#### GPTQ-for-LLaMa

View File

@ -29,10 +29,16 @@ class ExllamaHF(PreTrainedModel):
super().__init__(PretrainedConfig())
self.ex_config = config
self.ex_model = ExLlama(self.ex_config)
self.ex_cache = ExLlamaCache(self.ex_model)
self.generation_config = GenerationConfig()
self.lora = None
self.ex_cache = ExLlamaCache(self.ex_model)
self.past_seq = None
if shared.args.cfg_cache:
self.ex_cache_negative = ExLlamaCache(self.ex_model)
self.past_seq_negative = None
def _validate_model_class(self):
pass
@ -47,25 +53,46 @@ class ExllamaHF(PreTrainedModel):
return torch.device(0)
def __call__(self, *args, **kwargs):
input_ids = args[0] if len(args) > 0 else kwargs['input_ids']
use_cache = kwargs.get('use_cache', True)
labels = kwargs.get('labels', None)
cache = kwargs.get('past_key_values', None)
seq = input_ids[0].tolist()
past_key_values = kwargs.get('past_key_values', None)
if labels is None:
if cache is None:
self.ex_cache.current_seq_len = 0
cache = self.ex_cache
self.ex_model.forward(torch.tensor([seq[:-1]], dtype=torch.long), cache, preprocess_only=True, lora=self.lora)
if len(args) > 0:
if not shared.args.cfg_cache:
logger.error("Please enable the cfg-cache option to use CFG with ExLlama_HF.")
return
logits = self.ex_model.forward(torch.tensor([seq[-1:]], dtype=torch.long), cache, lora=self.lora).to(input_ids.device)
input_ids = args[0]
is_negative = True
past_seq = self.past_seq_negative
ex_cache = self.ex_cache_negative
else:
if cache is None:
self.ex_cache.current_seq_len = 0
cache = self.ex_cache
input_ids = kwargs['input_ids']
is_negative = False
past_seq = self.past_seq
ex_cache = self.ex_cache
logits = self.ex_model.forward(torch.tensor([seq], dtype=torch.long), cache, last_id_only=False, lora=self.lora)
seq = input_ids[0].tolist()
if is_negative and past_key_values is not None:
seq = past_key_values + seq
seq_tensor = torch.tensor(seq)
# Make the forward call
if labels is None:
if past_seq is None or not torch.equal(past_seq, seq_tensor[:-1]):
ex_cache.current_seq_len = 0
self.ex_model.forward(torch.tensor([seq[:-1]], dtype=torch.long), ex_cache, preprocess_only=True, lora=self.lora)
logits = self.ex_model.forward(torch.tensor([seq[-1:]], dtype=torch.long), ex_cache, lora=self.lora).to(input_ids.device)
else:
ex_cache.current_seq_len = 0
logits = self.ex_model.forward(torch.tensor([seq], dtype=torch.long), ex_cache, last_id_only=False, lora=self.lora)
if is_negative:
self.past_seq_negative = seq_tensor
else:
self.past_seq = seq_tensor
loss = None
if labels is not None:
@ -80,7 +107,7 @@ class ExllamaHF(PreTrainedModel):
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
return CausalLMOutputWithPast(logits=logits, past_key_values=cache if use_cache else None, loss=loss)
return CausalLMOutputWithPast(logits=logits, past_key_values=seq if use_cache else None, loss=loss)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):

View File

@ -33,7 +33,22 @@ class LlamacppHF(PreTrainedModel):
super().__init__(PretrainedConfig())
self.model = model
self.generation_config = GenerationConfig()
self.cache = None
self.past_seq = None
self.llamacpp_cache = {
'n_tokens': self.model.n_tokens,
'input_ids': self.model.input_ids,
'scores': self.model.scores
}
if shared.args.cfg_cache:
logger.warning('CFG is currently bugged and not functional for llamacpp_HF. Contributions are welcome.')
self.past_seq_negative = None
self.llamacpp_cache_negative = {
'n_tokens': self.model.n_tokens,
'input_ids': self.model.input_ids.copy(),
'scores': self.model.scores.copy()
}
def _validate_model_class(self):
pass
@ -44,36 +59,83 @@ class LlamacppHF(PreTrainedModel):
def prepare_inputs_for_generation(self, input_ids, **kwargs):
return {'input_ids': input_ids, **kwargs}
def save_cache(self):
self.llamacpp_cache.update({
'n_tokens': self.model.n_tokens,
'input_ids': self.model.input_ids,
'scores': self.model.scores
})
def save_negative_cache(self):
self.llamacpp_cache_negative.update({
'n_tokens': self.model.n_tokens,
'input_ids': self.model.input_ids,
'scores': self.model.scores
})
def load_cache(self):
self.model.n_tokens = self.llamacpp_cache['n_tokens']
self.model.input_ids = self.llamacpp_cache['input_ids']
self.model.scores = self.llamacpp_cache['scores']
def load_negative_cache(self):
self.model.n_tokens = self.llamacpp_cache_negative['n_tokens']
self.model.input_ids = self.llamacpp_cache_negative['input_ids']
self.model.scores = self.llamacpp_cache_negative['scores']
@property
def device(self) -> torch.device:
return torch.device(0)
def __call__(self, *args, **kwargs):
input_ids = args[0] if len(args) > 0 else kwargs['input_ids']
use_cache = kwargs.get('use_cache', True)
labels = kwargs.get('labels', None)
cache = kwargs.get('past_key_values', None)
past_key_values = kwargs.get('past_key_values', None)
if len(args) > 0:
if not shared.args.cfg_cache:
logger.error("Please enable the cfg-cache option to use CFG with llamacpp_HF.")
logger.warning('CFG is currently bugged and not functional for llamacpp_HF. Contributions are welcome.')
return
input_ids = args[0]
is_negative = True
past_seq = self.past_seq_negative
self.load_negative_cache()
else:
input_ids = kwargs['input_ids']
is_negative = False
past_seq = self.past_seq
self.load_cache()
seq = input_ids[0].tolist()
if is_negative and past_key_values is not None:
seq = past_key_values + seq
seq_tensor = torch.tensor(seq)
# Make the forward call
seq_tensor = torch.tensor(seq)
if labels is None:
if self.cache is None or not torch.equal(self.cache, seq_tensor[:-1]):
if past_seq is None or not torch.equal(past_seq, seq_tensor[:-1]):
self.model.reset()
self.model.eval(seq)
else:
self.model.eval([seq[-1]])
logits = torch.tensor(self.model.scores[self.model.n_tokens - 1, :]).view(1, 1, -1).to(kwargs['input_ids'].device)
logits = torch.tensor(self.model.scores[self.model.n_tokens - 1, :]).view(1, 1, -1).to(input_ids.device)
else:
self.model.reset()
self.model.eval(seq)
logits = torch.tensor(self.model.eval_logits)
logits = logits.view(1, logits.shape[0], logits.shape[1]).to(input_ids.device)
self.cache = seq_tensor
if is_negative:
self.save_negative_cache()
self.past_seq_negative = seq_tensor
else:
self.save_cache()
self.past_seq = seq_tensor
# Based on transformers/models/llama/modeling_llama.py
loss = None
if labels is not None:
# Shift so that tokens < n predict n
@ -87,7 +149,7 @@ class LlamacppHF(PreTrainedModel):
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
return CausalLMOutputWithPast(logits=logits, past_key_values=cache if use_cache else None, loss=loss)
return CausalLMOutputWithPast(logits=logits, past_key_values=seq if use_cache else None, loss=loss)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):

View File

@ -29,6 +29,7 @@ loaders_and_params = OrderedDict({
'max_seq_len',
'alpha_value',
'compress_pos_emb',
'cfg_cache',
'exllama_HF_info',
],
'ExLlama': [
@ -157,6 +158,8 @@ loaders_samplers = {
'mirostat_mode',
'mirostat_tau',
'mirostat_eta',
'guidance_scale',
'negative_prompt',
'ban_eos_token',
'add_bos_token',
'skip_special_tokens',

View File

@ -91,8 +91,8 @@ def apply_model_settings_to_state(model, state):
if 'wbits' in model_settings and type(model_settings['wbits']) is int and model_settings['wbits'] > 0:
loader = 'AutoGPTQ'
# If the user is using an alternative GPTQ loader, let them keep using it
if not (loader == 'AutoGPTQ' and state['loader'] in ['GPTQ-for-LLaMa', 'ExLlama', 'ExLlama_HF']):
# If the user is using an alternative loader for the same model type, let them keep using it
if not (loader == 'AutoGPTQ' and state['loader'] in ['GPTQ-for-LLaMa', 'ExLlama', 'ExLlama_HF']) and not (loader == 'llama.cpp' and state['loader'] in ['llamacpp_HF', 'ctransformers']):
state['loader'] = loader
for k in model_settings:

View File

@ -147,6 +147,7 @@ parser.add_argument('--disable_exllama', action='store_true', help='Disable ExLl
# ExLlama
parser.add_argument('--gpu-split', type=str, help="Comma-separated list of VRAM (in GB) to use per GPU device for model layers, e.g. 20,7,7")
parser.add_argument('--max_seq_len', type=int, default=2048, help="Maximum sequence length.")
parser.add_argument('--cfg-cache', action='store_true', help="ExLlama_HF: Create an additional cache for CFG negative prompts. Necessary to use CFG with that loader, but not necessary for CFG with base ExLlama.")
# DeepSpeed
parser.add_argument('--deepspeed', action='store_true', help='Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration.')

View File

@ -63,6 +63,7 @@ def list_model_elements():
'no_inject_fused_mlp',
'no_use_cuda_fp16',
'disable_exllama',
'cfg_cache',
'threads',
'n_batch',
'no_mmap',

View File

@ -111,6 +111,7 @@ def create_ui():
shared.gradio['low_vram'] = gr.Checkbox(label="low-vram", value=shared.args.low_vram)
shared.gradio['mlock'] = gr.Checkbox(label="mlock", value=shared.args.mlock)
shared.gradio['mul_mat_q'] = gr.Checkbox(label="mul_mat_q", value=shared.args.mul_mat_q)
shared.gradio['cfg_cache'] = gr.Checkbox(label="cfg-cache", value=shared.args.cfg_cache, info='Create an additional cache for CFG negative prompts.')
shared.gradio['tensor_split'] = gr.Textbox(label='tensor_split', info='Split the model across multiple GPUs, comma-separated list of proportions, e.g. 18,17')
shared.gradio['llama_cpp_seed'] = gr.Number(label='Seed (0 for random)', value=shared.args.llama_cpp_seed)
shared.gradio['trust_remote_code'] = gr.Checkbox(label="trust-remote-code", value=shared.args.trust_remote_code, info='Make sure to inspect the .py files inside the model folder before loading it with this option enabled.')