mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-22 08:07:56 +01:00
Implement CFG for ExLlama_HF (#3666)
This commit is contained in:
parent
2b675533f7
commit
d6934bc7bc
@ -304,6 +304,7 @@ Optionally, you can use the following command-line flags:
|
||||
|------------------|-------------|
|
||||
|`--gpu-split` | Comma-separated list of VRAM (in GB) to use per GPU device for model layers, e.g. `20,7,7` |
|
||||
|`--max_seq_len MAX_SEQ_LEN` | Maximum sequence length. |
|
||||
|`--cfg-cache` | ExLlama_HF: Create an additional cache for CFG negative prompts. Necessary to use CFG with that loader, but not necessary for CFG with base ExLlama. |
|
||||
|
||||
#### GPTQ-for-LLaMa
|
||||
|
||||
|
@ -29,10 +29,16 @@ class ExllamaHF(PreTrainedModel):
|
||||
super().__init__(PretrainedConfig())
|
||||
self.ex_config = config
|
||||
self.ex_model = ExLlama(self.ex_config)
|
||||
self.ex_cache = ExLlamaCache(self.ex_model)
|
||||
self.generation_config = GenerationConfig()
|
||||
self.lora = None
|
||||
|
||||
self.ex_cache = ExLlamaCache(self.ex_model)
|
||||
self.past_seq = None
|
||||
|
||||
if shared.args.cfg_cache:
|
||||
self.ex_cache_negative = ExLlamaCache(self.ex_model)
|
||||
self.past_seq_negative = None
|
||||
|
||||
def _validate_model_class(self):
|
||||
pass
|
||||
|
||||
@ -47,25 +53,46 @@ class ExllamaHF(PreTrainedModel):
|
||||
return torch.device(0)
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
input_ids = args[0] if len(args) > 0 else kwargs['input_ids']
|
||||
use_cache = kwargs.get('use_cache', True)
|
||||
labels = kwargs.get('labels', None)
|
||||
cache = kwargs.get('past_key_values', None)
|
||||
seq = input_ids[0].tolist()
|
||||
past_key_values = kwargs.get('past_key_values', None)
|
||||
|
||||
if labels is None:
|
||||
if cache is None:
|
||||
self.ex_cache.current_seq_len = 0
|
||||
cache = self.ex_cache
|
||||
self.ex_model.forward(torch.tensor([seq[:-1]], dtype=torch.long), cache, preprocess_only=True, lora=self.lora)
|
||||
if len(args) > 0:
|
||||
if not shared.args.cfg_cache:
|
||||
logger.error("Please enable the cfg-cache option to use CFG with ExLlama_HF.")
|
||||
return
|
||||
|
||||
logits = self.ex_model.forward(torch.tensor([seq[-1:]], dtype=torch.long), cache, lora=self.lora).to(input_ids.device)
|
||||
input_ids = args[0]
|
||||
is_negative = True
|
||||
past_seq = self.past_seq_negative
|
||||
ex_cache = self.ex_cache_negative
|
||||
else:
|
||||
if cache is None:
|
||||
self.ex_cache.current_seq_len = 0
|
||||
cache = self.ex_cache
|
||||
input_ids = kwargs['input_ids']
|
||||
is_negative = False
|
||||
past_seq = self.past_seq
|
||||
ex_cache = self.ex_cache
|
||||
|
||||
logits = self.ex_model.forward(torch.tensor([seq], dtype=torch.long), cache, last_id_only=False, lora=self.lora)
|
||||
seq = input_ids[0].tolist()
|
||||
if is_negative and past_key_values is not None:
|
||||
seq = past_key_values + seq
|
||||
|
||||
seq_tensor = torch.tensor(seq)
|
||||
|
||||
# Make the forward call
|
||||
if labels is None:
|
||||
if past_seq is None or not torch.equal(past_seq, seq_tensor[:-1]):
|
||||
ex_cache.current_seq_len = 0
|
||||
self.ex_model.forward(torch.tensor([seq[:-1]], dtype=torch.long), ex_cache, preprocess_only=True, lora=self.lora)
|
||||
|
||||
logits = self.ex_model.forward(torch.tensor([seq[-1:]], dtype=torch.long), ex_cache, lora=self.lora).to(input_ids.device)
|
||||
else:
|
||||
ex_cache.current_seq_len = 0
|
||||
logits = self.ex_model.forward(torch.tensor([seq], dtype=torch.long), ex_cache, last_id_only=False, lora=self.lora)
|
||||
|
||||
if is_negative:
|
||||
self.past_seq_negative = seq_tensor
|
||||
else:
|
||||
self.past_seq = seq_tensor
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
@ -80,7 +107,7 @@ class ExllamaHF(PreTrainedModel):
|
||||
shift_labels = shift_labels.to(shift_logits.device)
|
||||
loss = loss_fct(shift_logits, shift_labels)
|
||||
|
||||
return CausalLMOutputWithPast(logits=logits, past_key_values=cache if use_cache else None, loss=loss)
|
||||
return CausalLMOutputWithPast(logits=logits, past_key_values=seq if use_cache else None, loss=loss)
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
|
||||
|
@ -33,7 +33,22 @@ class LlamacppHF(PreTrainedModel):
|
||||
super().__init__(PretrainedConfig())
|
||||
self.model = model
|
||||
self.generation_config = GenerationConfig()
|
||||
self.cache = None
|
||||
|
||||
self.past_seq = None
|
||||
self.llamacpp_cache = {
|
||||
'n_tokens': self.model.n_tokens,
|
||||
'input_ids': self.model.input_ids,
|
||||
'scores': self.model.scores
|
||||
}
|
||||
|
||||
if shared.args.cfg_cache:
|
||||
logger.warning('CFG is currently bugged and not functional for llamacpp_HF. Contributions are welcome.')
|
||||
self.past_seq_negative = None
|
||||
self.llamacpp_cache_negative = {
|
||||
'n_tokens': self.model.n_tokens,
|
||||
'input_ids': self.model.input_ids.copy(),
|
||||
'scores': self.model.scores.copy()
|
||||
}
|
||||
|
||||
def _validate_model_class(self):
|
||||
pass
|
||||
@ -44,36 +59,83 @@ class LlamacppHF(PreTrainedModel):
|
||||
def prepare_inputs_for_generation(self, input_ids, **kwargs):
|
||||
return {'input_ids': input_ids, **kwargs}
|
||||
|
||||
def save_cache(self):
|
||||
self.llamacpp_cache.update({
|
||||
'n_tokens': self.model.n_tokens,
|
||||
'input_ids': self.model.input_ids,
|
||||
'scores': self.model.scores
|
||||
})
|
||||
|
||||
def save_negative_cache(self):
|
||||
self.llamacpp_cache_negative.update({
|
||||
'n_tokens': self.model.n_tokens,
|
||||
'input_ids': self.model.input_ids,
|
||||
'scores': self.model.scores
|
||||
})
|
||||
|
||||
def load_cache(self):
|
||||
self.model.n_tokens = self.llamacpp_cache['n_tokens']
|
||||
self.model.input_ids = self.llamacpp_cache['input_ids']
|
||||
self.model.scores = self.llamacpp_cache['scores']
|
||||
|
||||
def load_negative_cache(self):
|
||||
self.model.n_tokens = self.llamacpp_cache_negative['n_tokens']
|
||||
self.model.input_ids = self.llamacpp_cache_negative['input_ids']
|
||||
self.model.scores = self.llamacpp_cache_negative['scores']
|
||||
|
||||
@property
|
||||
def device(self) -> torch.device:
|
||||
return torch.device(0)
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
input_ids = args[0] if len(args) > 0 else kwargs['input_ids']
|
||||
use_cache = kwargs.get('use_cache', True)
|
||||
labels = kwargs.get('labels', None)
|
||||
cache = kwargs.get('past_key_values', None)
|
||||
past_key_values = kwargs.get('past_key_values', None)
|
||||
|
||||
if len(args) > 0:
|
||||
if not shared.args.cfg_cache:
|
||||
logger.error("Please enable the cfg-cache option to use CFG with llamacpp_HF.")
|
||||
logger.warning('CFG is currently bugged and not functional for llamacpp_HF. Contributions are welcome.')
|
||||
return
|
||||
|
||||
input_ids = args[0]
|
||||
is_negative = True
|
||||
past_seq = self.past_seq_negative
|
||||
self.load_negative_cache()
|
||||
else:
|
||||
input_ids = kwargs['input_ids']
|
||||
is_negative = False
|
||||
past_seq = self.past_seq
|
||||
self.load_cache()
|
||||
|
||||
seq = input_ids[0].tolist()
|
||||
if is_negative and past_key_values is not None:
|
||||
seq = past_key_values + seq
|
||||
|
||||
seq_tensor = torch.tensor(seq)
|
||||
|
||||
# Make the forward call
|
||||
seq_tensor = torch.tensor(seq)
|
||||
if labels is None:
|
||||
if self.cache is None or not torch.equal(self.cache, seq_tensor[:-1]):
|
||||
if past_seq is None or not torch.equal(past_seq, seq_tensor[:-1]):
|
||||
self.model.reset()
|
||||
self.model.eval(seq)
|
||||
else:
|
||||
self.model.eval([seq[-1]])
|
||||
|
||||
logits = torch.tensor(self.model.scores[self.model.n_tokens - 1, :]).view(1, 1, -1).to(kwargs['input_ids'].device)
|
||||
logits = torch.tensor(self.model.scores[self.model.n_tokens - 1, :]).view(1, 1, -1).to(input_ids.device)
|
||||
else:
|
||||
self.model.reset()
|
||||
self.model.eval(seq)
|
||||
logits = torch.tensor(self.model.eval_logits)
|
||||
logits = logits.view(1, logits.shape[0], logits.shape[1]).to(input_ids.device)
|
||||
|
||||
self.cache = seq_tensor
|
||||
if is_negative:
|
||||
self.save_negative_cache()
|
||||
self.past_seq_negative = seq_tensor
|
||||
else:
|
||||
self.save_cache()
|
||||
self.past_seq = seq_tensor
|
||||
|
||||
# Based on transformers/models/llama/modeling_llama.py
|
||||
loss = None
|
||||
if labels is not None:
|
||||
# Shift so that tokens < n predict n
|
||||
@ -87,7 +149,7 @@ class LlamacppHF(PreTrainedModel):
|
||||
shift_labels = shift_labels.to(shift_logits.device)
|
||||
loss = loss_fct(shift_logits, shift_labels)
|
||||
|
||||
return CausalLMOutputWithPast(logits=logits, past_key_values=cache if use_cache else None, loss=loss)
|
||||
return CausalLMOutputWithPast(logits=logits, past_key_values=seq if use_cache else None, loss=loss)
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
|
||||
|
@ -29,6 +29,7 @@ loaders_and_params = OrderedDict({
|
||||
'max_seq_len',
|
||||
'alpha_value',
|
||||
'compress_pos_emb',
|
||||
'cfg_cache',
|
||||
'exllama_HF_info',
|
||||
],
|
||||
'ExLlama': [
|
||||
@ -157,6 +158,8 @@ loaders_samplers = {
|
||||
'mirostat_mode',
|
||||
'mirostat_tau',
|
||||
'mirostat_eta',
|
||||
'guidance_scale',
|
||||
'negative_prompt',
|
||||
'ban_eos_token',
|
||||
'add_bos_token',
|
||||
'skip_special_tokens',
|
||||
|
@ -91,8 +91,8 @@ def apply_model_settings_to_state(model, state):
|
||||
if 'wbits' in model_settings and type(model_settings['wbits']) is int and model_settings['wbits'] > 0:
|
||||
loader = 'AutoGPTQ'
|
||||
|
||||
# If the user is using an alternative GPTQ loader, let them keep using it
|
||||
if not (loader == 'AutoGPTQ' and state['loader'] in ['GPTQ-for-LLaMa', 'ExLlama', 'ExLlama_HF']):
|
||||
# If the user is using an alternative loader for the same model type, let them keep using it
|
||||
if not (loader == 'AutoGPTQ' and state['loader'] in ['GPTQ-for-LLaMa', 'ExLlama', 'ExLlama_HF']) and not (loader == 'llama.cpp' and state['loader'] in ['llamacpp_HF', 'ctransformers']):
|
||||
state['loader'] = loader
|
||||
|
||||
for k in model_settings:
|
||||
|
@ -147,6 +147,7 @@ parser.add_argument('--disable_exllama', action='store_true', help='Disable ExLl
|
||||
# ExLlama
|
||||
parser.add_argument('--gpu-split', type=str, help="Comma-separated list of VRAM (in GB) to use per GPU device for model layers, e.g. 20,7,7")
|
||||
parser.add_argument('--max_seq_len', type=int, default=2048, help="Maximum sequence length.")
|
||||
parser.add_argument('--cfg-cache', action='store_true', help="ExLlama_HF: Create an additional cache for CFG negative prompts. Necessary to use CFG with that loader, but not necessary for CFG with base ExLlama.")
|
||||
|
||||
# DeepSpeed
|
||||
parser.add_argument('--deepspeed', action='store_true', help='Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration.')
|
||||
|
@ -63,6 +63,7 @@ def list_model_elements():
|
||||
'no_inject_fused_mlp',
|
||||
'no_use_cuda_fp16',
|
||||
'disable_exllama',
|
||||
'cfg_cache',
|
||||
'threads',
|
||||
'n_batch',
|
||||
'no_mmap',
|
||||
|
@ -111,6 +111,7 @@ def create_ui():
|
||||
shared.gradio['low_vram'] = gr.Checkbox(label="low-vram", value=shared.args.low_vram)
|
||||
shared.gradio['mlock'] = gr.Checkbox(label="mlock", value=shared.args.mlock)
|
||||
shared.gradio['mul_mat_q'] = gr.Checkbox(label="mul_mat_q", value=shared.args.mul_mat_q)
|
||||
shared.gradio['cfg_cache'] = gr.Checkbox(label="cfg-cache", value=shared.args.cfg_cache, info='Create an additional cache for CFG negative prompts.')
|
||||
shared.gradio['tensor_split'] = gr.Textbox(label='tensor_split', info='Split the model across multiple GPUs, comma-separated list of proportions, e.g. 18,17')
|
||||
shared.gradio['llama_cpp_seed'] = gr.Number(label='Seed (0 for random)', value=shared.args.llama_cpp_seed)
|
||||
shared.gradio['trust_remote_code'] = gr.Checkbox(label="trust-remote-code", value=shared.args.trust_remote_code, info='Make sure to inspect the .py files inside the model folder before loading it with this option enabled.')
|
||||
|
Loading…
Reference in New Issue
Block a user