Merge pull request #3697 from jllllll/llamacpp-ggml

Use separate llama-cpp-python packages for GGML support
This commit is contained in:
oobabooga 2023-08-27 01:51:00 -03:00 committed by GitHub
commit d826bc5d1b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 88 additions and 21 deletions

View File

@ -57,7 +57,8 @@ class ModelDownloader:
classifications = []
has_pytorch = False
has_pt = False
# has_gguf = False
has_gguf = False
has_ggml = False
has_safetensors = False
is_lora = False
while True:
@ -79,6 +80,7 @@ class ModelDownloader:
is_safetensors = re.match(r".*\.safetensors", fname)
is_pt = re.match(r".*\.pt", fname)
is_gguf = re.match(r'.*\.gguf', fname)
is_ggml = re.match(r".*ggml.*\.bin", fname)
is_tokenizer = re.match(r"(tokenizer|ice|spiece).*\.model", fname)
is_text = re.match(r".*\.(txt|json|py|md)", fname) or is_tokenizer
if any((is_pytorch, is_safetensors, is_pt, is_gguf, is_tokenizer, is_text)):
@ -102,8 +104,11 @@ class ModelDownloader:
has_pt = True
classifications.append('pt')
elif is_gguf:
# has_gguf = True
has_gguf = True
classifications.append('gguf')
elif is_ggml:
has_ggml = True
classifications.append('ggml')
cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50'
cursor = base64.b64encode(cursor)
@ -115,6 +120,12 @@ class ModelDownloader:
if classifications[i] in ['pytorch', 'pt']:
links.pop(i)
# If both GGML and GGUF are available, download GGUF only
if has_ggml and has_gguf:
for i in range(len(classifications) - 1, -1, -1):
if classifications[i] == 'ggml':
links.pop(i)
return links, sha256, is_lora
def get_output_folder(self, model, branch, is_lora, base_folder=None):

View File

@ -9,23 +9,38 @@ from transformers.modeling_outputs import CausalLMOutputWithPast
from modules import RoPE, shared
from modules.logging_colors import logger
from modules.utils import is_gguf
import llama_cpp
try:
import llama_cpp_ggml
except:
llama_cpp_ggml = llama_cpp
if torch.cuda.is_available() and not torch.version.hip:
try:
import llama_cpp_cuda
except:
llama_cpp_cuda = None
try:
import llama_cpp_ggml_cuda
except:
llama_cpp_ggml_cuda = llama_cpp_cuda
else:
llama_cpp_cuda = None
llama_cpp_ggml_cuda = None
def llama_cpp_lib():
if shared.args.cpu or llama_cpp_cuda is None:
return llama_cpp
def llama_cpp_lib(model_file: Union[str, Path] = None):
if model_file is not None:
gguf_model = is_gguf(model_file)
else:
return llama_cpp_cuda
gguf_model = True
if shared.args.cpu or llama_cpp_cuda is None:
return llama_cpp if gguf_model else llama_cpp_ggml
else:
return llama_cpp_cuda if gguf_model else llama_cpp_ggml_cuda
class LlamacppHF(PreTrainedModel):
@ -165,7 +180,7 @@ class LlamacppHF(PreTrainedModel):
if path.is_file():
model_file = path
else:
model_file = list(path.glob('*.gguf*'))[0]
model_file = (list(path.glob('*.gguf*')) + list(path.glob('*ggml*.bin')))[0]
logger.info(f"llama.cpp weights detected: {model_file}\n")
@ -188,12 +203,17 @@ class LlamacppHF(PreTrainedModel):
'rope_freq_base': RoPE.get_rope_freq_base(shared.args.alpha_value, shared.args.rope_freq_base),
'tensor_split': tensor_split_list,
'rope_freq_scale': 1.0 / shared.args.compress_pos_emb,
'n_gqa': shared.args.n_gqa or None,
'rms_norm_eps': shared.args.rms_norm_eps or None,
'logits_all': True,
}
Llama = llama_cpp_lib().Llama
if not is_gguf(model_file):
ggml_params = {
'n_gqa': shared.args.n_gqa or None,
'rms_norm_eps': shared.args.rms_norm_eps or None,
}
params = params | ggml_params
Llama = llama_cpp_lib(model_file).Llama
model = Llama(**params)
return LlamacppHF(model)

View File

@ -1,5 +1,7 @@
import re
from functools import partial
from pathlib import Path
from typing import Union
import torch
@ -7,23 +9,38 @@ from modules import RoPE, shared
from modules.callbacks import Iteratorize
from modules.logging_colors import logger
from modules.text_generation import get_max_prompt_length
from modules.utils import is_gguf
import llama_cpp
try:
import llama_cpp_ggml
except:
llama_cpp_ggml = llama_cpp
if torch.cuda.is_available() and not torch.version.hip:
try:
import llama_cpp_cuda
except:
llama_cpp_cuda = None
try:
import llama_cpp_ggml_cuda
except:
llama_cpp_ggml_cuda = llama_cpp_cuda
else:
llama_cpp_cuda = None
llama_cpp_ggml_cuda = None
def llama_cpp_lib():
if shared.args.cpu or llama_cpp_cuda is None:
return llama_cpp
def llama_cpp_lib(model_file: Union[str, Path] = None):
if model_file is not None:
gguf_model = is_gguf(model_file)
else:
return llama_cpp_cuda
gguf_model = True
if shared.args.cpu or llama_cpp_cuda is None:
return llama_cpp if gguf_model else llama_cpp_ggml
else:
return llama_cpp_cuda if gguf_model else llama_cpp_ggml_cuda
def ban_eos_logits_processor(eos_token, input_ids, logits):
@ -41,8 +58,8 @@ class LlamaCppModel:
@classmethod
def from_pretrained(self, path):
Llama = llama_cpp_lib().Llama
LlamaCache = llama_cpp_lib().LlamaCache
Llama = llama_cpp_lib(str(path)).Llama
LlamaCache = llama_cpp_lib(str(path)).LlamaCache
result = self()
cache_capacity = 0
@ -75,9 +92,14 @@ class LlamaCppModel:
'rope_freq_base': RoPE.get_rope_freq_base(shared.args.alpha_value, shared.args.rope_freq_base),
'tensor_split': tensor_split_list,
'rope_freq_scale': 1.0 / shared.args.compress_pos_emb,
}
if not is_gguf(str(path)):
ggml_params = {
'n_gqa': shared.args.n_gqa or None,
'rms_norm_eps': shared.args.rms_norm_eps or None,
}
params = params | ggml_params
result.model = Llama(**params)
if cache_capacity > 0:

View File

@ -241,7 +241,7 @@ def llamacpp_loader(model_name):
if path.is_file():
model_file = path
else:
model_file = list(Path(f'{shared.args.model_dir}/{model_name}').glob('*.gguf*'))[0]
model_file = (list(Path(f'{shared.args.model_dir}/{model_name}').glob('*.gguf*')) + list(Path(f'{shared.args.model_dir}/{model_name}').glob('*ggml*.bin')))[0]
logger.info(f"llama.cpp weights detected: {model_file}")
model, tokenizer = LlamaCppModel.from_pretrained(model_file)

View File

@ -24,9 +24,9 @@ def infer_loader(model_name):
loader = None
elif Path(f'{shared.args.model_dir}/{model_name}/quantize_config.json').exists() or ('wbits' in model_settings and type(model_settings['wbits']) is int and model_settings['wbits'] > 0):
loader = 'AutoGPTQ'
elif len(list(path_to_model.glob('*.gguf*'))) > 0:
elif len(list(path_to_model.glob('*.gguf*')) + list(path_to_model.glob('*ggml*.bin'))) > 0:
loader = 'llama.cpp'
elif re.match(r'.*\.gguf', model_name.lower()):
elif re.match(r'.*\.gguf|.*ggml.*\.bin', model_name.lower()):
loader = 'llama.cpp'
elif re.match(r'.*rwkv.*\.pth', model_name.lower()):
loader = 'RWKV'

View File

@ -2,6 +2,7 @@ import os
import re
from datetime import datetime
from pathlib import Path
from typing import Union
from modules import shared
from modules.logging_colors import logger
@ -124,3 +125,11 @@ def get_datasets(path: str, ext: str):
def get_available_chat_styles():
return sorted(set(('-'.join(k.stem.split('-')[1:]) for k in Path('css').glob('chat_style*.css'))), key=natural_keys)
# Determines if a llama.cpp model is in GGUF format
# Copied from ctransformers utils.py
def is_gguf(path: Union[str, Path]) -> bool:
path = str(Path(path).resolve())
with open(path, "rb") as f:
magic = f.read(4)
return magic == "GGUF".encode()

View File

@ -35,6 +35,11 @@ https://github.com/abetlen/llama-cpp-python/releases/download/v0.1.79/llama_cpp_
# llama-cpp-python with CUDA support
https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.1.79+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows"
https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.1.79+cu117-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
# llama-cpp-python with GGML support
https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python_ggml-0.1.78+cpuavx2-cp310-cp310-win_amd64.whl; platform_system == "Windows"
https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python_ggml-0.1.78+cpuavx2-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_ggml_cuda-0.1.78+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows"
https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_ggml_cuda-0.1.78+cu117-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
# GPTQ-for-LLaMa
https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.0/gptq_for_llama-0.1.0+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows"