mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-21 15:48:04 +01:00
Training PRO extension (#3961)
This commit is contained in:
parent
ad8ac545a5
commit
e34c6e6938
96
extensions/Training_PRO/custom_scheduler.py
Normal file
96
extensions/Training_PRO/custom_scheduler.py
Normal file
@ -0,0 +1,96 @@
|
||||
from functools import partial
|
||||
import torch
|
||||
import transformers
|
||||
import math
|
||||
from torch.optim.lr_scheduler import LambdaLR
|
||||
|
||||
|
||||
#FPHAM custom training scheduller block - should be extracted to separate file
|
||||
last_print_label = ''
|
||||
|
||||
def _get_fp_cosine_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_firstepoch_steps: int):
|
||||
|
||||
global last_print_label
|
||||
print_label = ''
|
||||
|
||||
num_warmup_steps = min(num_warmup_steps,num_firstepoch_steps)
|
||||
|
||||
if current_step < num_warmup_steps:
|
||||
print_label = 'Scheduler: Warmup'
|
||||
elif current_step < num_firstepoch_steps:
|
||||
print_label = 'Scheduler: Hold'
|
||||
else:
|
||||
print_label = 'Scheduler: Annealing'
|
||||
|
||||
if print_label != last_print_label:
|
||||
print(print_label)
|
||||
|
||||
last_print_label = print_label
|
||||
|
||||
if current_step < num_warmup_steps:
|
||||
return float(current_step) / float(max(1, num_warmup_steps))
|
||||
|
||||
if current_step < num_firstepoch_steps:
|
||||
return 1.0
|
||||
|
||||
progress = float(current_step - num_firstepoch_steps) / float(max(1, num_training_steps - num_firstepoch_steps))
|
||||
num_cycles = 0.5
|
||||
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
|
||||
|
||||
|
||||
def custom_scheduler_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_firstepoch_steps, last_epoch=-1):
|
||||
"""
|
||||
Args:
|
||||
optimizer ([`~torch.optim.Optimizer`]):
|
||||
The optimizer for which to schedule the learning rate.
|
||||
num_warmup_steps (`int`):
|
||||
The number of steps for the warmup phase.
|
||||
num_training_steps (`int`):
|
||||
The total number of training steps.
|
||||
last_epoch (`int`, *optional*, defaults to -1):
|
||||
The index of the last epoch when resuming training.
|
||||
|
||||
Return:
|
||||
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
|
||||
"""
|
||||
|
||||
lr_lambda = partial(
|
||||
_get_fp_cosine_schedule_with_warmup_lr_lambda,
|
||||
num_warmup_steps=num_warmup_steps,
|
||||
num_training_steps=num_training_steps,
|
||||
num_firstepoch_steps = num_firstepoch_steps,
|
||||
)
|
||||
return LambdaLR(optimizer, lr_lambda, last_epoch)
|
||||
|
||||
class FPSchedulerTrainer(transformers.Trainer):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def create_scheduler(self, num_training_steps: int, optimizer: torch.optim.Optimizer = None):
|
||||
#Setup the scheduler. The optimizer of the trainer must have been set up either before this method is called or passed as an argument.
|
||||
|
||||
if self.args.lr_scheduler_type == 'cosine':
|
||||
num_train_epochs = self.args.num_train_epochs
|
||||
num_warmup_steps=self.args.get_warmup_steps(num_training_steps)
|
||||
num_firstepoch_steps = math.ceil(num_training_steps/num_train_epochs)
|
||||
num_warmup_acc = num_warmup_steps*self.args.gradient_accumulation_steps
|
||||
num_firstepoch_steps_acc = num_firstepoch_steps*self.args.gradient_accumulation_steps
|
||||
num_training_steps_acc = num_training_steps*self.args.gradient_accumulation_steps
|
||||
num_warmup_acc_min = min(num_warmup_acc, num_firstepoch_steps_acc)
|
||||
|
||||
if num_warmup_acc>num_firstepoch_steps_acc:
|
||||
print(f"\033[1;31;1mWARNING: The number of warmup steps is set too high! It will be clamped to 1 epoch, essentially going from warmup to annealing.\033[0;37;0m")
|
||||
print (f"FP Scheduler Warmup: 0-[{num_warmup_acc_min}], Hold [{num_warmup_acc_min}]-{num_firstepoch_steps_acc}, Annealing {num_firstepoch_steps_acc}-{num_training_steps_acc}")
|
||||
else:
|
||||
print (f"FP Scheduler Warmup: 0-{num_warmup_acc_min}, Hold {num_warmup_acc_min}-{num_firstepoch_steps_acc}, Annealing {num_firstepoch_steps_acc}-{num_training_steps_acc}")
|
||||
|
||||
self.lr_scheduler = custom_scheduler_with_warmup(
|
||||
optimizer=self.optimizer if optimizer is None else optimizer,
|
||||
num_warmup_steps=num_warmup_steps,
|
||||
num_training_steps=num_training_steps,
|
||||
num_firstepoch_steps = num_firstepoch_steps,
|
||||
)
|
||||
self._created_lr_scheduler = True
|
||||
return self.lr_scheduler
|
||||
else:
|
||||
return super().create_scheduler(num_training_steps=num_training_steps, optimizer=optimizer)
|
62
extensions/Training_PRO/matplotgraph.py
Normal file
62
extensions/Training_PRO/matplotgraph.py
Normal file
@ -0,0 +1,62 @@
|
||||
import os
|
||||
import json
|
||||
|
||||
def create_graph(lora_path, lora_name):
|
||||
try:
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.ticker import ScalarFormatter
|
||||
|
||||
peft_model_path = f'{lora_path}/training_graph.json'
|
||||
image_model_path = f'{lora_path}/training_graph.png'
|
||||
# Check if the JSON file exists
|
||||
if os.path.exists(peft_model_path):
|
||||
# Load data from JSON file
|
||||
with open(peft_model_path, 'r') as file:
|
||||
data = json.load(file)
|
||||
# Extract x, y1, and y2 values
|
||||
x = [item['epoch'] for item in data]
|
||||
y1 = [item['learning_rate'] for item in data]
|
||||
y2 = [item['loss'] for item in data]
|
||||
|
||||
# Create the line chart
|
||||
fig, ax1 = plt.subplots(figsize=(10, 6))
|
||||
|
||||
|
||||
# Plot y1 (learning rate) on the first y-axis
|
||||
ax1.plot(x, y1, 'b-', label='Learning Rate')
|
||||
ax1.set_xlabel('Epoch')
|
||||
ax1.set_ylabel('Learning Rate', color='b')
|
||||
ax1.tick_params('y', colors='b')
|
||||
|
||||
# Create a second y-axis
|
||||
ax2 = ax1.twinx()
|
||||
|
||||
# Plot y2 (loss) on the second y-axis
|
||||
ax2.plot(x, y2, 'r-', label='Loss')
|
||||
ax2.set_ylabel('Loss', color='r')
|
||||
ax2.tick_params('y', colors='r')
|
||||
|
||||
# Set the y-axis formatter to display numbers in scientific notation
|
||||
ax1.yaxis.set_major_formatter(ScalarFormatter(useMathText=True))
|
||||
ax1.ticklabel_format(style='sci', axis='y', scilimits=(0,0))
|
||||
|
||||
# Add grid
|
||||
ax1.grid(True)
|
||||
|
||||
# Combine the legends for both plots
|
||||
lines, labels = ax1.get_legend_handles_labels()
|
||||
lines2, labels2 = ax2.get_legend_handles_labels()
|
||||
ax2.legend(lines + lines2, labels + labels2, loc='best')
|
||||
|
||||
# Set the title
|
||||
plt.title(f'{lora_name} LR and Loss vs Epoch')
|
||||
|
||||
# Save the chart as an image
|
||||
plt.savefig(image_model_path)
|
||||
|
||||
print(f"Graph saved in {image_model_path}")
|
||||
else:
|
||||
print(f"File 'training_graph.json' does not exist in the {lora_path}")
|
||||
|
||||
except ImportError:
|
||||
print("matplotlib is not installed. Please install matplotlib to create PNG graphs")
|
11
extensions/Training_PRO/readme.md
Normal file
11
extensions/Training_PRO/readme.md
Normal file
@ -0,0 +1,11 @@
|
||||
This is an expanded Training tab
|
||||
|
||||
|
||||
- Chunking: precise raw text slicer (PRTS) uses sentence slicing and making sure things are clean on all ends
|
||||
- overlap chunking - this special overlapping will make additional overlap block based on logical rules (aka no overlap block on hard cut)
|
||||
- custom scheduler (follow the code to make your own) In LR Scheduler select FP_low_epoch_annealing - this scheduler will keep the LR constant for first epoch then use cosine for the rest - this part would be best to spawn into a new py file
|
||||
- save loss threshold - will not save the "Save every n steps" checkpoints until this threshold is reached (I definitely don't need multiple checkpoints that are 2.5 loss - I'm usually interested in checkpoints between say 1.5 and 1.9 loss)
|
||||
- saves graph png file at the end with learning rate and loss per epoch
|
||||
- adding EOS to each block or to hard cut only
|
||||
- automatically lowers gradient accumulation if you go overboard and set gradient accumulation that will be higher than actual data - transformers would then throw error (or they used to, not sure if still true) but in any way, it will fix bad data
|
||||
- turn BOS on and OFF
|
794
extensions/Training_PRO/script.py
Normal file
794
extensions/Training_PRO/script.py
Normal file
@ -0,0 +1,794 @@
|
||||
import os
|
||||
|
||||
os.environ["WANDB_MODE"] = "offline"
|
||||
# os.environ["WANDB_DISABLED"] = "true"
|
||||
|
||||
import json
|
||||
import math
|
||||
import random
|
||||
import shutil
|
||||
import sys
|
||||
import threading
|
||||
import time
|
||||
import traceback
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
|
||||
import gradio as gr
|
||||
import torch
|
||||
import transformers
|
||||
|
||||
from .custom_scheduler import FPSchedulerTrainer
|
||||
from .matplotgraph import create_graph
|
||||
from .train_utils import get_available_loras_local, precise_cut
|
||||
|
||||
from datasets import Dataset, load_dataset
|
||||
from peft import (
|
||||
LoraConfig,
|
||||
get_peft_model,
|
||||
prepare_model_for_kbit_training,
|
||||
set_peft_model_state_dict
|
||||
)
|
||||
from peft.utils.other import \
|
||||
TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING as model_to_lora_modules
|
||||
from transformers.models.auto.modeling_auto import (
|
||||
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
|
||||
)
|
||||
|
||||
from modules import shared, utils
|
||||
from modules.ui import create_refresh_button
|
||||
|
||||
from modules.evaluate import (
|
||||
calculate_perplexity,
|
||||
generate_markdown_table,
|
||||
save_past_evaluations
|
||||
)
|
||||
from modules.logging_colors import logger
|
||||
from modules.models import reload_model
|
||||
from modules.utils import natural_keys
|
||||
|
||||
|
||||
params = {
|
||||
"display_name": "Training PRO",
|
||||
"is_tab": True
|
||||
}
|
||||
|
||||
MODEL_CLASSES = {v[1]: v[0] for v in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES.items()}
|
||||
PARAMETERS = ["lora_name", "always_override", "save_steps", "micro_batch_size", "batch_size", "epochs", "learning_rate", "lr_scheduler_type", "lora_rank", "lora_alpha", "lora_dropout", "cutoff_len", "dataset", "eval_dataset", "format", "eval_steps", "raw_text_file", "higher_rank_limit", "warmup_steps", "optimizer", "hard_cut_string", "train_only_after", "stop_at_loss", "add_eos_token", "min_chars", "report_to", "precize_slicing_overlap", "add_eos_token_type", "save_steps_under_loss", "add_bos_token"]
|
||||
WANT_INTERRUPT = False
|
||||
|
||||
train_log = {}
|
||||
train_template = {}
|
||||
train_log_graph = []
|
||||
Lora_sortedByTime = False
|
||||
|
||||
def ui():
|
||||
with gr.Tab('Train LoRA', elem_id='lora-train-tab'):
|
||||
tmp = gr.State('')
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
gr.Markdown("This is enhanced version of Lora Training with an alternative RAW text chunking code")
|
||||
|
||||
with gr.Row():
|
||||
with gr.Column(scale=5):
|
||||
with gr.Row():
|
||||
copy_from = gr.Dropdown(label='Copy parameters from', value='None', choices=get_available_loras_local(Lora_sortedByTime), elem_classes=['slim-dropdown'])
|
||||
create_refresh_button(copy_from, lambda: None, lambda: {'choices': get_available_loras_local(Lora_sortedByTime)}, 'refresh-button')
|
||||
with gr.Column():
|
||||
sort_byTime = gr.Checkbox(label='Sort list by Date', value=False, info='Sorts Loras by date created.', elem_classes=['no-background'])
|
||||
|
||||
with gr.Row():
|
||||
with gr.Column(scale=5):
|
||||
lora_name = gr.Textbox(label='Name', info='The name of your new LoRA file')
|
||||
|
||||
with gr.Column():
|
||||
always_override = gr.Checkbox(label='Override Existing Files', value=False, info='If the name is the same, checking will replace the existing file, and unchecking will load and continue from it (the rank must be the same).', elem_classes=['no-background'])
|
||||
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
lora_rank = gr.Slider(label='LoRA Rank', value=32, minimum=0, maximum=1024, step=4, info='Also called dimension count. Higher values = larger file, more content control. Smaller values = smaller file, less control. Use 4 or 8 for style, 128 or 256 to teach, 1024+ for fine-detail on big data. More VRAM is needed for higher ranks.')
|
||||
lora_alpha = gr.Slider(label='LoRA Alpha', value=64, minimum=0, maximum=2048, step=4, info='This divided by the rank becomes the scaling of the LoRA. Higher means stronger. A good standard value is twice your Rank.')
|
||||
batch_size = gr.Slider(label='Batch Size', value=128, minimum=0, maximum=1024, step=4, info='Global batch size. The two batch sizes together determine gradient accumulation (gradientAccum = batch / microBatch). Higher gradient accum values lead to better quality training.')
|
||||
micro_batch_size = gr.Slider(label='Micro Batch Size', value=4, minimum=1, maximum=128, step=1, info='Per-device batch size (NOTE: multiple devices not yet implemented). Increasing this will increase VRAM usage.')
|
||||
cutoff_len = gr.Slider(label='Cutoff Length', minimum=0, maximum=2048, value=256, step=32, info='Cutoff length for text input. Essentially, how long of a line of text to feed in at a time. Higher values require drastically more VRAM.')
|
||||
|
||||
with gr.Column():
|
||||
save_steps = gr.Number(label='Save every n steps', value=0, info='If above 0, a checkpoint of the LoRA will be saved every time this many steps pass.')
|
||||
save_steps_under_loss = gr.Slider(label='Save Loss Threshold', value=1.9, minimum=0.0, maximum=3.0, step=0.1, info='Save checkpoints only if the loss is less or equall Threshold loss. (0 = save all)')
|
||||
epochs = gr.Number(label='Epochs', value=3, info='Number of times every entry in the dataset should be fed into training. So 1 means feed each item in once, 5 means feed it in five times, etc.')
|
||||
learning_rate = gr.Textbox(label='Learning Rate', value='3e-4', info='In scientific notation. 3e-4 is a good starting base point. 1e-2 is extremely high, 1e-6 is extremely low.')
|
||||
lr_scheduler_type = gr.Dropdown(label='LR Scheduler', value='linear', choices=['linear', 'constant', 'constant_with_warmup', 'cosine', 'cosine_with_restarts', 'polynomial', 'inverse_sqrt', 'FP_low_epoch_annealing'], info='Learning rate scheduler - defines how the learning rate changes over time. "Constant" means never change, "linear" means to go in a straight line from the learning rate down to 0, cosine follows a curve, etc.', elem_classes=['slim-dropdown'])
|
||||
|
||||
with gr.Accordion(label='Advanced Options', open=True):
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
lora_dropout = gr.Slider(label='LoRA Dropout', minimum=0.0, maximum=1.0, step=0.025, value=0.05, info='Percentage probability for dropout of LoRA layers. This can help reduce overfitting. Most users should leave at default.')
|
||||
stop_at_loss = gr.Slider(label='Stop at loss', minimum=0.0, maximum=3.0, step=0.1, value=0.00, info='The process will automatically stop once the desired loss value is reached. (reasonable numbers are 1.5-1.8)')
|
||||
optimizer = gr.Dropdown(label='Optimizer', value='adamw_torch', choices=['adamw_hf', 'adamw_torch', 'adamw_torch_fused', 'adamw_torch_xla', 'adamw_apex_fused', 'adafactor', 'adamw_bnb_8bit', 'adamw_anyprecision', 'sgd', 'adagrad'], info='Different optimizer implementation options, for advanced users. Effects of different options are not well documented yet.', elem_classes=['slim-dropdown'])
|
||||
|
||||
with gr.Column():
|
||||
warmup_steps = gr.Number(label='Warmup Steps', value=100, info='For this many steps at the start, the learning rate will be lower than normal. This helps the trainer prepare the model and precompute statistics to improve the quality of training after the start.')
|
||||
train_only_after = gr.Textbox(label='Train Only After', value='', info='Only consider text *after* this string in any given chunk for training. For Alpaca datasets, use "### Response:" to only train the response and ignore the input.')
|
||||
add_bos_token = gr.Checkbox(label='Add BOS token', value=True, info="Adds BOS token for each dataset item")
|
||||
add_eos_token = gr.Checkbox(label='Add EOS token', value=False, info="Adds EOS token for each dataset item")
|
||||
add_eos_token_type = gr.Dropdown(label='EOS placement (raw text)', choices=['Every Block', 'Hard Cut Blocks Only'], value='Every Block', info='', allow_custom_value = False)
|
||||
|
||||
precize_slicing_overlap = gr.Checkbox(label='Overlap blocks in Raw Text', value = True, info="Adds overlapping blocks (except for Hard Cut)")
|
||||
|
||||
higher_rank_limit = gr.Checkbox(label='Enable higher ranks', value=False, info='If checked, changes Rank/Alpha slider above to go much higher. This will not work without a datacenter-class GPU.')
|
||||
report_to = gr.Radio(label="Save detailed logs with", value="None", choices=["None", "wandb", "tensorboard"], interactive=True)
|
||||
|
||||
with gr.Column():
|
||||
with gr.Tab(label='Formatted Dataset'):
|
||||
with gr.Row():
|
||||
format = gr.Dropdown(choices=utils.get_datasets('training/formats', 'json'), value='None', label='Data Format', info='The format file used to decide how to format the dataset input.', elem_classes=['slim-dropdown'])
|
||||
create_refresh_button(format, lambda: None, lambda: {'choices': utils.get_datasets('training/formats', 'json')}, 'refresh-button')
|
||||
|
||||
with gr.Row():
|
||||
dataset = gr.Dropdown(choices=utils.get_datasets('training/datasets', 'json'), value='None', label='Dataset', info='The dataset file to use for training.', elem_classes=['slim-dropdown'])
|
||||
create_refresh_button(dataset, lambda: None, lambda: {'choices': utils.get_datasets('training/datasets', 'json')}, 'refresh-button')
|
||||
|
||||
with gr.Row():
|
||||
eval_dataset = gr.Dropdown(choices=utils.get_datasets('training/datasets', 'json'), value='None', label='Evaluation Dataset', info='The (optional) dataset file used to evaluate the model after training.', elem_classes=['slim-dropdown'])
|
||||
create_refresh_button(eval_dataset, lambda: None, lambda: {'choices': utils.get_datasets('training/datasets', 'json')}, 'refresh-button')
|
||||
|
||||
eval_steps = gr.Number(label='Evaluate every n steps', value=100, info='If an evaluation dataset is given, test it every time this many steps pass.')
|
||||
|
||||
with gr.Tab(label="Raw text file"):
|
||||
with gr.Row():
|
||||
raw_text_file = gr.Dropdown(choices=utils.get_datasets('training/datasets', 'txt'), value='None', label='Text file', info='The raw text file to use for training.', elem_classes=['slim-dropdown'])
|
||||
create_refresh_button(raw_text_file, lambda: None, lambda: {'choices': utils.get_datasets('training/datasets', 'txt')}, 'refresh-button')
|
||||
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
hard_cut_string = gr.Textbox(label='Hard Cut String', value='\\n\\n\\n', info='String that indicates a hard cut between text parts. Helps prevent unwanted overlap.')
|
||||
min_chars = gr.Number(label='Ignore small blocks', value=0, info='Ignore Hard Cut blocks that have less or equal characters than this number')
|
||||
|
||||
with gr.Row():
|
||||
start_button = gr.Button("Start LoRA Training", variant='primary')
|
||||
stop_button = gr.Button("Interrupt")
|
||||
|
||||
output = gr.Markdown(value="Ready")
|
||||
|
||||
with gr.Tab('Perplexity evaluation', elem_id='evaluate-tab'):
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
models = gr.Dropdown(utils.get_available_models(), label='Models', multiselect=True)
|
||||
evaluate_text_file = gr.Dropdown(choices=['wikitext', 'ptb', 'ptb_new'] + utils.get_datasets('training/datasets', 'txt')[1:], value='wikitext', label='Input dataset', info='The raw text file on which the model will be evaluated. The first options are automatically downloaded: wikitext, ptb, and ptb_new. The next options are your local text files under training/datasets.')
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
stride_length = gr.Slider(label='Stride', minimum=1, maximum=2048, value=512, step=1, info='Used to make the evaluation faster at the cost of accuracy. 1 = slowest but most accurate. 512 is a common value.')
|
||||
|
||||
with gr.Column():
|
||||
max_length = gr.Slider(label='max_length', minimum=0, maximum=8096, value=0, step=1, info='The context for each evaluation. If set to 0, the maximum context length for the model will be used.')
|
||||
|
||||
with gr.Row():
|
||||
start_current_evaluation = gr.Button("Evaluate loaded model")
|
||||
start_evaluation = gr.Button("Evaluate selected models")
|
||||
stop_evaluation = gr.Button("Interrupt")
|
||||
|
||||
with gr.Column():
|
||||
evaluation_log = gr.Markdown(value='')
|
||||
|
||||
evaluation_table = gr.Dataframe(value=generate_markdown_table(), interactive=True)
|
||||
with gr.Row():
|
||||
save_comments = gr.Button('Save comments', elem_classes="small-button")
|
||||
refresh_table = gr.Button('Refresh the table', elem_classes="small-button")
|
||||
|
||||
# Training events
|
||||
all_params = [lora_name, always_override, save_steps, micro_batch_size, batch_size, epochs, learning_rate, lr_scheduler_type, lora_rank, lora_alpha, lora_dropout, cutoff_len, dataset, eval_dataset, format, eval_steps, raw_text_file, higher_rank_limit, warmup_steps, optimizer, hard_cut_string, train_only_after, stop_at_loss, add_eos_token, min_chars, report_to, precize_slicing_overlap, add_eos_token_type, save_steps_under_loss, add_bos_token]
|
||||
|
||||
copy_from.change(do_copy_params, [copy_from] + all_params, all_params)
|
||||
start_button.click(do_train, all_params, output)
|
||||
stop_button.click(do_interrupt, None, None, queue=False)
|
||||
higher_rank_limit.change(change_rank_limit, [higher_rank_limit], [lora_rank, lora_alpha])
|
||||
|
||||
# Evaluation events. For some reason, the interrupt event
|
||||
# doesn't work with the .then() syntax, so I write them one
|
||||
# by one in this ugly but functional way.
|
||||
ev = start_evaluation.click(calculate_perplexity, [models, evaluate_text_file, stride_length, max_length], evaluation_log, show_progress=False)
|
||||
start_evaluation.click(generate_markdown_table, None, evaluation_table, show_progress=False)
|
||||
|
||||
start_current_evaluation.click(lambda: ['current model'], None, tmp)
|
||||
ev_cur = start_current_evaluation.click(calculate_perplexity, [tmp, evaluate_text_file, stride_length, max_length], evaluation_log, show_progress=False)
|
||||
start_current_evaluation.click(generate_markdown_table, None, evaluation_table, show_progress=False)
|
||||
|
||||
stop_evaluation.click(None, None, None, cancels=[ev, ev_cur], queue=False)
|
||||
refresh_table.click(generate_markdown_table, None, evaluation_table, show_progress=True)
|
||||
save_comments.click(
|
||||
save_past_evaluations, evaluation_table, None).then(
|
||||
lambda: "Comments saved.", None, evaluation_log, show_progress=False)
|
||||
|
||||
def reload_lora():
|
||||
global Lora_sortedByTime
|
||||
return gr.Dropdown.update(choices=get_available_loras_local(Lora_sortedByTime))
|
||||
|
||||
def global_lora_time(sort_byTime):
|
||||
global Lora_sortedByTime
|
||||
Lora_sortedByTime = sort_byTime
|
||||
|
||||
|
||||
sort_byTime.change(global_lora_time, sort_byTime, None).then(reload_lora,None,copy_from)
|
||||
|
||||
|
||||
def do_interrupt():
|
||||
global WANT_INTERRUPT
|
||||
WANT_INTERRUPT = True
|
||||
|
||||
|
||||
def do_copy_params(lora_name: str, *args):
|
||||
f_name = f"{shared.args.lora_dir}/{clean_path(None, lora_name)}/training_parameters.json"
|
||||
if Path(f_name).is_file():
|
||||
with open(f_name, 'r', encoding='utf-8') as format_file:
|
||||
params: dict[str, str] = json.load(format_file)
|
||||
else:
|
||||
params = {}
|
||||
|
||||
result = list()
|
||||
for i in range(0, len(PARAMETERS)):
|
||||
key = PARAMETERS[i]
|
||||
if key in params:
|
||||
result.append(params[key])
|
||||
else:
|
||||
result.append(args[i])
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def change_rank_limit(use_higher_ranks: bool):
|
||||
mult = 2 if use_higher_ranks else 1
|
||||
return {"maximum": 1024 * mult, "__type__": "update"}, {"maximum": 2048 * mult, "__type__": "update"}
|
||||
|
||||
|
||||
def clean_path(base_path: str, path: str):
|
||||
"""Strips unusual symbols and forcibly builds a path as relative to the intended directory."""
|
||||
path = path.replace('\\', '/').replace('..', '_')
|
||||
if base_path is None:
|
||||
return path
|
||||
|
||||
return f'{Path(base_path).absolute()}/{path}'
|
||||
|
||||
|
||||
def backup_adapter(input_folder):
|
||||
# Get the creation date of the file adapter_model.bin
|
||||
try:
|
||||
adapter_file = Path(f"{input_folder}/adapter_model.bin")
|
||||
if adapter_file.is_file():
|
||||
|
||||
logger.info("Backing up existing LoRA adapter...")
|
||||
creation_date = datetime.fromtimestamp(adapter_file.stat().st_ctime)
|
||||
creation_date_str = creation_date.strftime("Backup-%Y-%m-%d")
|
||||
|
||||
# Create the new subfolder
|
||||
subfolder_path = Path(f"{input_folder}/{creation_date_str}")
|
||||
subfolder_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Check if the file already exists in the subfolder
|
||||
backup_adapter_file = Path(f"{input_folder}/{creation_date_str}/adapter_model.bin")
|
||||
if backup_adapter_file.is_file():
|
||||
print(" - Backup already exists. Skipping backup process.")
|
||||
return
|
||||
|
||||
# Copy existing files to the new subfolder
|
||||
existing_files = Path(input_folder).iterdir()
|
||||
for file in existing_files:
|
||||
if file.is_file():
|
||||
shutil.copy2(file, subfolder_path)
|
||||
except Exception as e:
|
||||
print("An error occurred in backup_adapter:", str(e))
|
||||
|
||||
|
||||
def calc_trainable_parameters(model):
|
||||
trainable_params = 0
|
||||
all_param = 0
|
||||
for _, param in model.named_parameters():
|
||||
num_params = param.numel()
|
||||
# if using DS Zero 3 and the weights are initialized empty
|
||||
if num_params == 0 and hasattr(param, "ds_numel"):
|
||||
num_params = param.ds_numel
|
||||
|
||||
all_param += num_params
|
||||
if param.requires_grad:
|
||||
trainable_params += num_params
|
||||
|
||||
return trainable_params, all_param
|
||||
|
||||
|
||||
def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch_size: int, batch_size: int, epochs: int, learning_rate: str, lr_scheduler_type: str, lora_rank: int, lora_alpha: int, lora_dropout: float, cutoff_len: int, dataset: str, eval_dataset: str, format: str, eval_steps: int, raw_text_file: str, higher_rank_limit: bool, warmup_steps: int, optimizer: str, hard_cut_string: str, train_only_after: str, stop_at_loss: float, add_eos_token: bool, min_chars: int, report_to: str, precize_slicing_overlap: bool, add_eos_token_type: str, save_steps_under_loss: float, add_bos_token: bool):
|
||||
|
||||
if shared.args.monkey_patch:
|
||||
from alpaca_lora_4bit.monkeypatch.peft_tuners_lora_monkey_patch import (
|
||||
replace_peft_model_with_int4_lora_model
|
||||
)
|
||||
replace_peft_model_with_int4_lora_model()
|
||||
|
||||
global WANT_INTERRUPT
|
||||
WANT_INTERRUPT = False
|
||||
|
||||
# == Input validation / processing ==
|
||||
yield "Preparing the input..."
|
||||
lora_file_path = clean_path(None, lora_name)
|
||||
if lora_file_path.strip() == '':
|
||||
yield "Missing or invalid LoRA file name input."
|
||||
return
|
||||
|
||||
lora_file_path = f"{Path(shared.args.lora_dir)}/{lora_file_path}"
|
||||
actual_lr = float(learning_rate)
|
||||
model_type = type(shared.model).__name__
|
||||
|
||||
if model_type in MODEL_CLASSES:
|
||||
model_id = MODEL_CLASSES[model_type]
|
||||
else:
|
||||
model_id = "llama"
|
||||
if model_type == "PeftModelForCausalLM":
|
||||
if len(shared.lora_names) > 0:
|
||||
yield "You are trying to train a LoRA while you already have another LoRA loaded. This will work, but may have unexpected effects. *(Will continue anyway in 5 seconds, press `Interrupt` to stop.)*"
|
||||
logger.warning("Training LoRA over top of another LoRA. May have unexpected effects.")
|
||||
else:
|
||||
yield "Model ID not matched due to LoRA loading. Consider reloading base model. *(Will continue anyway in 5 seconds, press `Interrupt` to stop.)*"
|
||||
logger.warning("Model ID not matched due to LoRA loading. Consider reloading base model.")
|
||||
else:
|
||||
yield "LoRA training has only currently been validated for LLaMA, OPT, GPT-J, and GPT-NeoX models. Unexpected errors may follow. *(Will continue anyway in 5 seconds, press `Interrupt` to stop.)*"
|
||||
logger.warning(f"LoRA training has only currently been validated for LLaMA, OPT, GPT-J, and GPT-NeoX models. (Found model type: {model_type})")
|
||||
|
||||
time.sleep(5)
|
||||
|
||||
if shared.args.loader == 'GPTQ-for-LLaMa' and not shared.args.monkey_patch:
|
||||
yield "LoRA training with GPTQ-for-LLaMa requires loading with `--monkey-patch`"
|
||||
return
|
||||
|
||||
if cutoff_len <= 0 or micro_batch_size <= 0 or batch_size <= 0 or actual_lr <= 0 or lora_rank <= 0 or lora_alpha <= 0:
|
||||
yield "Cannot input zeroes."
|
||||
return
|
||||
|
||||
gradient_accumulation_steps = batch_size // micro_batch_size
|
||||
shared.tokenizer.pad_token_id = 0
|
||||
shared.tokenizer.padding_side = "left"
|
||||
|
||||
def encode(text, prepend_bos_token):
|
||||
|
||||
result = shared.tokenizer.encode(text, truncation=True, max_length=cutoff_len)
|
||||
# Check if the first two tokens are BOS
|
||||
if len(result) >= 2 and result[:2] == [shared.tokenizer.bos_token_id, shared.tokenizer.bos_token_id]:
|
||||
result = result[1:]
|
||||
|
||||
if not prepend_bos_token and result[0] == shared.tokenizer.bos_token_id:
|
||||
result = result[1:]
|
||||
return result
|
||||
|
||||
def tokenize(prompt, append_eos_token=False, prepend_bos_token = False):
|
||||
|
||||
if train_only_after == '' or train_only_after not in prompt:
|
||||
input_ids = encode(prompt, prepend_bos_token)
|
||||
|
||||
if append_eos_token and input_ids[-1] != shared.tokenizer.eos_token_id and len(input_ids) < cutoff_len:
|
||||
input_ids.append(shared.tokenizer.eos_token_id)
|
||||
|
||||
input_ids = [shared.tokenizer.pad_token_id] * (cutoff_len - len(input_ids)) + input_ids
|
||||
|
||||
labels = [1] * len(input_ids)
|
||||
else:
|
||||
ind = prompt.index(train_only_after) + len(train_only_after)
|
||||
before_tokens = encode(prompt[:ind], prepend_bos_token)
|
||||
after_tokens = encode(prompt[ind:], False)
|
||||
|
||||
if append_eos_token and after_tokens[-1] != shared.tokenizer.eos_token_id:
|
||||
after_tokens.append(shared.tokenizer.eos_token_id)
|
||||
|
||||
full_length = len(after_tokens) + len(before_tokens)
|
||||
if full_length > cutoff_len:
|
||||
after_tokens = after_tokens[:cutoff_len - len(before_tokens)]
|
||||
else:
|
||||
before_tokens = [shared.tokenizer.pad_token_id] * (cutoff_len - full_length) + before_tokens
|
||||
|
||||
input_ids = before_tokens + after_tokens
|
||||
labels = [-100] * len(before_tokens) + [1] * len(after_tokens)
|
||||
|
||||
input_ids = torch.tensor(input_ids)
|
||||
return {
|
||||
"input_ids": input_ids,
|
||||
"labels": labels,
|
||||
"attention_mask": input_ids.ne(shared.tokenizer.pad_token_id),
|
||||
}
|
||||
|
||||
train_template.clear()
|
||||
|
||||
|
||||
|
||||
print(f"*** LoRA: {lora_name} ***")
|
||||
|
||||
# END OF FPHAM SENTENCE SPLIT functions ===================
|
||||
|
||||
# == Prep the dataset, format, etc ==
|
||||
if raw_text_file not in ['None', '']:
|
||||
train_template["template_type"] = "raw_text"
|
||||
logger.info("Loading raw text file dataset...")
|
||||
fullpath = clean_path('training/datasets', f'{raw_text_file}')
|
||||
fullpath = Path(fullpath)
|
||||
if fullpath.is_dir():
|
||||
logger.info('Training path directory {}'.format(raw_text_file))
|
||||
raw_text = ""
|
||||
file_paths = sorted(fullpath.glob('*.txt'), key=lambda path: natural_keys(path.name))
|
||||
for file_path in file_paths:
|
||||
if file_path.is_file():
|
||||
with file_path.open('r', encoding='utf-8') as file:
|
||||
raw_text += file.read().replace('\r', '')
|
||||
|
||||
logger.info(f"Loaded training file: {file_path.name}")
|
||||
else:
|
||||
with open(clean_path('training/datasets', f'{raw_text_file}.txt'), 'r', encoding='utf-8') as file:
|
||||
raw_text = file.read().replace('\r', '')
|
||||
|
||||
# FPHAM PRECISE SLICING
|
||||
if min_chars<0:
|
||||
min_chars = 0
|
||||
|
||||
add_EOS_to_all = add_eos_token and add_eos_token_type == 'Every Block'
|
||||
add_EOS_to_HC = add_eos_token and add_eos_token_type != 'Every Block'
|
||||
|
||||
#print (f"add_eos_token {add_eos_token}, add_EOS_to_all {add_EOS_to_all}, add_EOS_to_HC {add_EOS_to_HC}")
|
||||
|
||||
# == New more precise slicing on sentence boundary ==
|
||||
text_chunks = precise_cut(raw_text, precize_slicing_overlap, min_chars, add_EOS_to_HC, cutoff_len, hard_cut_string)
|
||||
train_data = Dataset.from_list([tokenize(x, add_EOS_to_all, add_bos_token) for x in text_chunks])
|
||||
if add_EOS_to_all:
|
||||
print(f"Added EOS to {len(text_chunks)} blocks")
|
||||
|
||||
del text_chunks
|
||||
eval_data = None
|
||||
else:
|
||||
if dataset in ['None', '']:
|
||||
yield "Missing dataset choice input, cannot continue."
|
||||
return
|
||||
|
||||
if format in ['None', '']:
|
||||
yield "Missing format choice input, cannot continue."
|
||||
return
|
||||
|
||||
train_template["template_type"] = "dataset"
|
||||
|
||||
with open(clean_path('training/formats', f'{format}.json'), 'r', encoding='utf-8-sig') as formatFile:
|
||||
format_data: dict[str, str] = json.load(formatFile)
|
||||
|
||||
# == store training prompt ==
|
||||
for _, value in format_data.items():
|
||||
prompt_key = f"template_{len(train_template)}"
|
||||
train_template[prompt_key] = value
|
||||
|
||||
def generate_prompt(data_point: dict[str, str]):
|
||||
for options, data in format_data.items():
|
||||
if set(options.split(',')) == set(x[0] for x in data_point.items() if (type(x[1]) is str and len(x[1].strip()) > 0)):
|
||||
for key, val in data_point.items():
|
||||
if type(val) is str:
|
||||
data = data.replace(f'%{key}%', val)
|
||||
return data
|
||||
raise RuntimeError(f'Data-point "{data_point}" has no keyset match within format "{list(format_data.keys())}"')
|
||||
|
||||
def generate_and_tokenize_prompt(data_point):
|
||||
prompt = generate_prompt(data_point)
|
||||
return tokenize(prompt, add_eos_token, add_bos_token)
|
||||
|
||||
logger.info("Loading JSON datasets...")
|
||||
data = load_dataset("json", data_files=clean_path('training/datasets', f'{dataset}.json'))
|
||||
train_data = data['train'].map(generate_and_tokenize_prompt, new_fingerprint='%030x' % random.randrange(16**30))
|
||||
|
||||
print(f"BOS: {add_bos_token} EOS: {add_eos_token}")
|
||||
|
||||
if eval_dataset == 'None':
|
||||
eval_data = None
|
||||
else:
|
||||
eval_data = load_dataset("json", data_files=clean_path('training/datasets', f'{eval_dataset}.json'))
|
||||
eval_data = eval_data['train'].map(generate_and_tokenize_prompt, new_fingerprint='%030x' % random.randrange(16**30))
|
||||
|
||||
# == We MUST reload model if it went through any previous training, even failed one ==
|
||||
if shared.model_dirty_from_training:
|
||||
selected_model = shared.model_name
|
||||
if selected_model:
|
||||
print("\033[1;31;1m(Model has been modified by previous training, it needs to be reloaded...)\033[0;37;0m")
|
||||
try:
|
||||
yield f"Reloading {selected_model}..."
|
||||
reload_model()
|
||||
if shared.model is not None:
|
||||
print("Model reloaded OK, continue with training.")
|
||||
else:
|
||||
return f"Failed to load {selected_model}."
|
||||
except:
|
||||
exc = traceback.format_exc()
|
||||
logger.error('Failed to reload the model.')
|
||||
print(exc)
|
||||
return exc.replace('\n', '\n\n')
|
||||
|
||||
# == Start prepping the model itself ==
|
||||
if not hasattr(shared.model, 'lm_head') or hasattr(shared.model.lm_head, 'weight'):
|
||||
logger.info("Getting model ready...")
|
||||
prepare_model_for_kbit_training(shared.model)
|
||||
|
||||
# base model is now frozen and should not be reused for any other LoRA training than this one
|
||||
shared.model_dirty_from_training = True
|
||||
|
||||
logger.info("Preparing for training...")
|
||||
config = LoraConfig(
|
||||
r=lora_rank,
|
||||
lora_alpha=lora_alpha,
|
||||
target_modules=model_to_lora_modules[model_id],
|
||||
lora_dropout=lora_dropout,
|
||||
bias="none",
|
||||
task_type="CAUSAL_LM"
|
||||
)
|
||||
|
||||
# == Backup the existing adapter ==
|
||||
if not always_override:
|
||||
backup_adapter(lora_file_path)
|
||||
|
||||
# == get model trainable params
|
||||
model_trainable_params, model_all_params = calc_trainable_parameters(shared.model)
|
||||
|
||||
try:
|
||||
logger.info("Creating LoRA model...")
|
||||
lora_model = get_peft_model(shared.model, config)
|
||||
if not always_override and Path(f"{lora_file_path}/adapter_model.bin").is_file():
|
||||
logger.info("Loading existing LoRA data...")
|
||||
state_dict_peft = torch.load(f"{lora_file_path}/adapter_model.bin")
|
||||
set_peft_model_state_dict(lora_model, state_dict_peft)
|
||||
except:
|
||||
yield traceback.format_exc().replace('\n', '\n\n')
|
||||
return
|
||||
|
||||
if shared.args.monkey_patch:
|
||||
from alpaca_lora_4bit.autograd_4bit import Autograd4bitQuantLinear
|
||||
from alpaca_lora_4bit.models import Linear4bitLt
|
||||
for _, m in lora_model.named_modules():
|
||||
if isinstance(m, Autograd4bitQuantLinear) or isinstance(m, Linear4bitLt):
|
||||
if m.is_v1_model:
|
||||
m.zeros = m.zeros.half()
|
||||
m.scales = m.scales.half()
|
||||
|
||||
class Tracked():
|
||||
def __init__(self):
|
||||
self.current_steps = 0
|
||||
self.max_steps = 0
|
||||
self.did_save = False
|
||||
|
||||
tracked = Tracked()
|
||||
actual_save_steps = math.ceil(save_steps / gradient_accumulation_steps)
|
||||
|
||||
class Callbacks(transformers.TrainerCallback):
|
||||
def on_step_begin(self, args: transformers.TrainingArguments, state: transformers.TrainerState, control: transformers.TrainerControl, **kwargs):
|
||||
tracked.current_steps = state.global_step * gradient_accumulation_steps
|
||||
tracked.max_steps = state.max_steps * gradient_accumulation_steps
|
||||
if WANT_INTERRUPT:
|
||||
control.should_epoch_stop = True
|
||||
control.should_training_stop = True
|
||||
elif state.global_step > 0 and actual_save_steps > 0 and state.global_step % actual_save_steps == 0:
|
||||
current_loss = float(train_log.get('loss', 0.0))
|
||||
if current_loss <= save_steps_under_loss or save_steps_under_loss==0.0:
|
||||
lora_model.save_pretrained(f"{lora_file_path}/checkpoint-{tracked.current_steps}/")
|
||||
print(f"\033[1;30;40mStep: {tracked.current_steps:6} \033[0;37;0m Checkpoint-{tracked.current_steps} saved")
|
||||
# Save log
|
||||
with open(f"{lora_file_path}/checkpoint-{tracked.current_steps}/training_log.json", 'w', encoding='utf-8') as file:
|
||||
json.dump(train_log, file, indent=2)
|
||||
# == Save training prompt ==
|
||||
with open(f"{lora_file_path}/checkpoint-{tracked.current_steps}/training_prompt.json", 'w', encoding='utf-8') as file:
|
||||
json.dump(train_template, file, indent=2)
|
||||
|
||||
def on_substep_end(self, args: transformers.TrainingArguments, state: transformers.TrainerState, control: transformers.TrainerControl, **kwargs):
|
||||
tracked.current_steps += 1
|
||||
if WANT_INTERRUPT:
|
||||
control.should_epoch_stop = True
|
||||
control.should_training_stop = True
|
||||
|
||||
def on_log(self, args: transformers.TrainingArguments, state: transformers.TrainerState, control: transformers.TrainerControl, logs, **kwargs):
|
||||
train_log.update(logs)
|
||||
train_log.update({"current_steps": tracked.current_steps})
|
||||
if WANT_INTERRUPT:
|
||||
print("\033[1;31;1mInterrupted by user\033[0;37;0m")
|
||||
|
||||
print(f"\033[1;30;40mStep: {tracked.current_steps:6} \033[0;37;0m", end='')
|
||||
|
||||
entry = {
|
||||
'current_steps': int(train_log.get('current_steps',0)),
|
||||
'loss': float(train_log.get('loss', 0.0)),
|
||||
'learning_rate': float(train_log.get('learning_rate', 0.0)),
|
||||
'epoch': float(train_log.get('epoch', 0.0))
|
||||
}
|
||||
|
||||
# Add the entry to the continuous log
|
||||
train_log_graph.append(entry)
|
||||
|
||||
# Save the graph log for now, we can later generate full graph
|
||||
with open(f"{lora_file_path}/training_graph.json", 'w') as file:
|
||||
json.dump(train_log_graph, file, indent=4)
|
||||
|
||||
if 'loss' in logs:
|
||||
loss = float(logs['loss'])
|
||||
if loss <= stop_at_loss:
|
||||
control.should_epoch_stop = True
|
||||
control.should_training_stop = True
|
||||
print(f"\033[1;31;1mStop Loss {stop_at_loss} reached.\033[0;37;0m")
|
||||
|
||||
# FPHAM SAMPLE REQ Transformers error handling
|
||||
sample_req = int(train_data.num_rows)//micro_batch_size
|
||||
|
||||
if sample_req < gradient_accumulation_steps:
|
||||
print(f"\033[1;31;1mWARNING: Current gradient accumulation is too high for the amount of training data.\033[0;37;0m")
|
||||
print(f"Gradient accumulation: {gradient_accumulation_steps} should be less than: {sample_req}. \033[1;31;1mThis could crash Accelerate/Transformers\033[0;37;0m")
|
||||
min_batchSize = sample_req*micro_batch_size
|
||||
print(f"Preferable fix: \033[1;31;1mIncrease the size of dataset\033[0;37;0m")
|
||||
print(f"... or Decrerase Batch Size \033[1;31;1m{batch_size}\033[0;37;0m to below {min_batchSize}")
|
||||
gradient_accumulation_steps = max(1,sample_req-1)
|
||||
print(f"Last resort fix for this run: Lowering Gradient accumulation to {gradient_accumulation_steps}. [Good luck]")
|
||||
|
||||
else:
|
||||
print(f"Data Size Check: Gradient accumulation: {gradient_accumulation_steps} <= Data/Batch {sample_req} ... [OK]")
|
||||
|
||||
#END OF FPHAM SAMPLE REQ
|
||||
|
||||
# FPHAM Custom Scheduler ==
|
||||
custom_scheduller = False
|
||||
lr_scheduler_type_arg = lr_scheduler_type
|
||||
|
||||
if lr_scheduler_type == 'FP_low_epoch_annealing':
|
||||
custom_scheduller = True
|
||||
lr_scheduler_type_arg = 'cosine'
|
||||
|
||||
args=transformers.TrainingArguments(
|
||||
report_to=report_to if report_to != "None" else None,
|
||||
per_device_train_batch_size=micro_batch_size,
|
||||
gradient_accumulation_steps=gradient_accumulation_steps,
|
||||
warmup_steps=math.ceil(warmup_steps / gradient_accumulation_steps),
|
||||
num_train_epochs=epochs,
|
||||
learning_rate=actual_lr,
|
||||
fp16=False if shared.args.cpu else True,
|
||||
optim=optimizer,
|
||||
logging_steps=1,
|
||||
evaluation_strategy="steps" if eval_data is not None else "no",
|
||||
eval_steps=math.ceil(eval_steps / gradient_accumulation_steps) if eval_data is not None else None,
|
||||
save_strategy="steps" if eval_data is not None else "no",
|
||||
output_dir=lora_file_path,
|
||||
lr_scheduler_type=lr_scheduler_type_arg,
|
||||
load_best_model_at_end=eval_data is not None,
|
||||
# TODO: Enable multi-device support
|
||||
ddp_find_unused_parameters=None,
|
||||
no_cuda=shared.args.cpu,
|
||||
)
|
||||
|
||||
if custom_scheduller:
|
||||
trainer = FPSchedulerTrainer(
|
||||
model=lora_model,
|
||||
train_dataset=train_data,
|
||||
eval_dataset=eval_data,
|
||||
args=args,
|
||||
data_collator=transformers.DataCollatorForLanguageModeling(shared.tokenizer, mlm=False),
|
||||
callbacks=list([Callbacks()])
|
||||
)
|
||||
else:
|
||||
trainer = transformers.Trainer(
|
||||
model=lora_model,
|
||||
train_dataset=train_data,
|
||||
eval_dataset=eval_data,
|
||||
args=args,
|
||||
data_collator=transformers.DataCollatorForLanguageModeling(shared.tokenizer, mlm=False),
|
||||
callbacks=list([Callbacks()])
|
||||
)
|
||||
|
||||
# END OF FPHAM CUSTOM SCHEDULER
|
||||
|
||||
lora_model.config.use_cache = False
|
||||
|
||||
if torch.__version__ >= "2" and sys.platform != "win32":
|
||||
lora_model = torch.compile(lora_model)
|
||||
|
||||
# == Save parameters for reuse ==
|
||||
with open(f"{lora_file_path}/training_parameters.json", 'w', encoding='utf-8') as file:
|
||||
vars = locals()
|
||||
json.dump({x: vars[x] for x in PARAMETERS}, file, indent=2)
|
||||
|
||||
# == Save training prompt ==
|
||||
with open(f"{lora_file_path}/training_prompt.json", 'w', encoding='utf-8') as file:
|
||||
json.dump(train_template, file, indent=2)
|
||||
|
||||
# == Main run and monitor loop ==
|
||||
logger.info("Starting training...")
|
||||
yield "Starting..."
|
||||
|
||||
lora_trainable_param, lora_all_param = calc_trainable_parameters(lora_model)
|
||||
|
||||
projections_string = ", ".join([projection.replace("_proj", "") for projection in model_to_lora_modules[model_id]])
|
||||
|
||||
print(f"Training '{model_id}' model using ({projections_string}) projections")
|
||||
|
||||
if lora_all_param > 0:
|
||||
print(f"Trainable params: {lora_trainable_param:,d} ({100 * lora_trainable_param / lora_all_param:.4f} %), All params: {lora_all_param:,d} (Model: {model_all_params:,d})")
|
||||
|
||||
train_log.update({"base_model_name": shared.model_name})
|
||||
train_log.update({"base_model_class": shared.model.__class__.__name__})
|
||||
train_log.update({"base_loaded_in_4bit": getattr(lora_model, "is_loaded_in_4bit", False)})
|
||||
train_log.update({"base_loaded_in_8bit": getattr(lora_model, "is_loaded_in_8bit", False)})
|
||||
train_log.update({"projections": projections_string})
|
||||
|
||||
if stop_at_loss > 0:
|
||||
print(f"Monitoring loss \033[1;31;1m(Auto-Stop at: {stop_at_loss})\033[0;37;0m")
|
||||
|
||||
if WANT_INTERRUPT:
|
||||
yield "Interrupted before start."
|
||||
return
|
||||
|
||||
def log_train_dataset(trainer):
|
||||
decoded_entries = []
|
||||
# Try to decode the entries and write the log file
|
||||
try:
|
||||
# Iterate over the first 10 elements in the dataset (or fewer if there are less than 10)
|
||||
for i in range(min(10, len(trainer.train_dataset))):
|
||||
decoded_text = shared.tokenizer.decode(trainer.train_dataset[i]['input_ids'])
|
||||
decoded_entries.append({"value": decoded_text})
|
||||
|
||||
# Write the log file
|
||||
Path('logs').mkdir(exist_ok=True)
|
||||
with open(Path('logs/train_dataset_sample.json'), 'w') as json_file:
|
||||
json.dump(decoded_entries, json_file, indent=4)
|
||||
|
||||
logger.info("Log file 'train_dataset_sample.json' created in the 'logs' directory.")
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to create log file due to error: {e}")
|
||||
|
||||
def threaded_run():
|
||||
log_train_dataset(trainer)
|
||||
trainer.train()
|
||||
# Note: save in the thread in case the gradio thread breaks (eg browser closed)
|
||||
lora_model.save_pretrained(lora_file_path)
|
||||
logger.info("LoRA training run is completed and saved.")
|
||||
# Save log
|
||||
with open(f"{lora_file_path}/training_log.json", 'w', encoding='utf-8') as file:
|
||||
json.dump(train_log, file, indent=2)
|
||||
|
||||
thread = threading.Thread(target=threaded_run)
|
||||
thread.start()
|
||||
last_step = 0
|
||||
start_time = time.perf_counter()
|
||||
|
||||
while thread.is_alive():
|
||||
time.sleep(0.5)
|
||||
if WANT_INTERRUPT:
|
||||
yield "Interrupting, please wait... *(Run will stop after the current training step completes.)*"
|
||||
|
||||
elif tracked.current_steps != last_step:
|
||||
last_step = tracked.current_steps
|
||||
time_elapsed = time.perf_counter() - start_time
|
||||
if time_elapsed <= 0:
|
||||
timer_info = ""
|
||||
total_time_estimate = 999
|
||||
else:
|
||||
its = tracked.current_steps / time_elapsed
|
||||
if its > 1:
|
||||
timer_info = f"`{its:.2f}` it/s"
|
||||
else:
|
||||
timer_info = f"`{1.0/its:.2f}` s/it"
|
||||
|
||||
total_time_estimate = (1.0 / its) * (tracked.max_steps)
|
||||
|
||||
yield f"Running... **{tracked.current_steps}** / **{tracked.max_steps}** ... {timer_info}, {format_time(time_elapsed)} / {format_time(total_time_estimate)} ... {format_time(total_time_estimate - time_elapsed)} remaining"
|
||||
|
||||
# Saving in the train thread might fail if an error occurs, so save here if so.
|
||||
if not tracked.did_save:
|
||||
logger.info("Training complete, saving...")
|
||||
lora_model.save_pretrained(lora_file_path)
|
||||
|
||||
if WANT_INTERRUPT:
|
||||
logger.info("Training interrupted.")
|
||||
yield f"Interrupted. Incomplete LoRA saved to `{lora_file_path}`."
|
||||
else:
|
||||
logger.info("Training complete!")
|
||||
yield f"Done! LoRA saved to `{lora_file_path}`.\n\nBefore testing your new LoRA, make sure to first reload the model, as it is currently dirty from training."
|
||||
|
||||
create_graph(lora_file_path, lora_name)
|
||||
|
||||
def format_time(seconds: float):
|
||||
if seconds < 120:
|
||||
return f"`{seconds:.0f}` seconds"
|
||||
|
||||
minutes = seconds / 60
|
||||
if minutes < 120:
|
||||
return f"`{minutes:.0f}` minutes"
|
||||
|
||||
hours = minutes / 60
|
||||
return f"`{hours:.0f}` hours"
|
192
extensions/Training_PRO/train_utils.py
Normal file
192
extensions/Training_PRO/train_utils.py
Normal file
@ -0,0 +1,192 @@
|
||||
import os
|
||||
from modules import shared, utils
|
||||
from pathlib import Path
|
||||
import json
|
||||
|
||||
def list_subfoldersByTime(directory):
|
||||
|
||||
if not directory.endswith('/'):
|
||||
directory += '/'
|
||||
subfolders = []
|
||||
path = directory
|
||||
name_list = os.listdir(path)
|
||||
full_list = [os.path.join(path,i) for i in name_list]
|
||||
time_sorted_list = sorted(full_list, key=os.path.getmtime,reverse=True)
|
||||
|
||||
for entry in time_sorted_list:
|
||||
if os.path.isdir(entry):
|
||||
entry_str = f"{entry}" # Convert entry to a string
|
||||
full_path = entry_str
|
||||
entry_str = entry_str.replace('\\','/')
|
||||
entry_str = entry_str.replace(f"{directory}", "") # Remove directory part
|
||||
subfolders.append(entry_str)
|
||||
|
||||
return subfolders
|
||||
|
||||
def get_available_loras_local(_sortedByTime):
|
||||
|
||||
model_dir = shared.args.lora_dir # Update with the appropriate directory path
|
||||
subfolders = []
|
||||
if _sortedByTime:
|
||||
subfolders = list_subfoldersByTime(model_dir)
|
||||
else:
|
||||
subfolders = utils.get_available_loras()
|
||||
|
||||
return subfolders
|
||||
|
||||
|
||||
# FPHAM SPLIT BY SENTENCE BLOCK ===============
|
||||
|
||||
def split_sentences(text: str, cutoff_len: int):
|
||||
sentences = []
|
||||
sentence = ''
|
||||
delimiters = ['. ', '? ', '! ', '... ', '.\n', '?\n', '!\n','...\n','</s>','<//>']
|
||||
abbreviations = ['Mr. ', 'Mrs. ', 'Dr. ', 'Ms. ', 'St. ', 'Prof. ', 'Jr. ', 'Ltd. ', 'Capt. ', 'Col. ', 'Gen. ', 'Ave. ', 'Blvd. ', 'Co. ', 'Corp. ', 'Dept. ', 'Est. ', 'Gov. ', 'Inc. ', 'Ph.D. ', 'Univ. ']
|
||||
errors = 0
|
||||
max_cut = cutoff_len-1
|
||||
prev_char = ''
|
||||
|
||||
for char in text:
|
||||
sentence += char
|
||||
|
||||
|
||||
if (any(sentence.endswith(delimiter) for delimiter in delimiters) and
|
||||
not (prev_char.isupper() and len(sentence) >= 3 and sentence[-3] != ' ') and
|
||||
not any(sentence.endswith(abbreviation) for abbreviation in abbreviations)):
|
||||
tokens = shared.tokenizer.encode(sentence)
|
||||
|
||||
if len(tokens) > max_cut:
|
||||
tokens = tokens[:max_cut]
|
||||
sentence = shared.tokenizer.decode(tokens, skip_special_tokens=True)
|
||||
errors = errors + 1
|
||||
|
||||
sentences.append({'text': sentence, 'size': len(tokens)})
|
||||
|
||||
sentence = ''
|
||||
|
||||
prev_char = char
|
||||
|
||||
if sentence:
|
||||
tokens = shared.tokenizer.encode(sentence)
|
||||
if len(tokens) > max_cut:
|
||||
tokens = tokens[:max_cut]
|
||||
sentence = shared.tokenizer.decode(tokens, skip_special_tokens=True)
|
||||
errors = errors + 1
|
||||
|
||||
sentences.append({'text': sentence, 'size': len(tokens)})
|
||||
|
||||
if errors > 0:
|
||||
print(f"Trimmed sentences beyond Cutoff Length: {errors}")
|
||||
|
||||
return sentences
|
||||
|
||||
# The goal of following code is to create blocks of text + overlapping blocks while:
|
||||
# respects sentence boundaries
|
||||
# always uses all the text
|
||||
# hard cut defined by hard_cut_string or </s> will always end at the end of data block
|
||||
# no overlapping blocks will be created across hard cut or across </s> token
|
||||
|
||||
def precise_cut(text: str, overlap: bool, min_chars_cut: int, eos_to_hc: bool, cutoff_len: int, hard_cut_string: str):
|
||||
|
||||
debug_slicer = False
|
||||
EOSX_str = '<//>' #hardcut placeholder
|
||||
EOS_str = '</s>'
|
||||
print("Precise raw text slicer: ON")
|
||||
|
||||
cut_string = hard_cut_string.replace('\\n', '\n')
|
||||
text = text.replace(cut_string, EOSX_str)
|
||||
sentences = split_sentences(text, cutoff_len)
|
||||
|
||||
print(f"Sentences: {len(sentences)}")
|
||||
sentencelist = []
|
||||
currentSentence = ''
|
||||
totalLength = 0
|
||||
max_cut = cutoff_len-1
|
||||
half_cut = cutoff_len//2
|
||||
halfcut_length = 0
|
||||
|
||||
edgeindex = []
|
||||
half_index = 0
|
||||
|
||||
for index, item in enumerate(sentences):
|
||||
|
||||
if halfcut_length+ item['size'] < half_cut:
|
||||
halfcut_length += item['size']
|
||||
half_index = index
|
||||
else:
|
||||
edgeindex.append(half_index)
|
||||
halfcut_length = -2 * max_cut
|
||||
|
||||
|
||||
if totalLength + item['size'] < max_cut and not currentSentence.endswith(EOSX_str):
|
||||
currentSentence += item['text']
|
||||
totalLength += item['size']
|
||||
else:
|
||||
|
||||
if len(currentSentence.strip()) > min_chars_cut:
|
||||
sentencelist.append(currentSentence.strip())
|
||||
|
||||
currentSentence = item['text']
|
||||
totalLength = item['size']
|
||||
halfcut_length = item['size']
|
||||
|
||||
if len(currentSentence.strip()) > min_chars_cut:
|
||||
sentencelist.append(currentSentence.strip())
|
||||
|
||||
unique_blocks = len(sentencelist)
|
||||
print(f"Text Blocks: {unique_blocks}")
|
||||
|
||||
#overlap strategies:
|
||||
# don't overlap across HARD CUT (EOSX)
|
||||
if overlap:
|
||||
for edge_idx in edgeindex:
|
||||
currentSentence = ''
|
||||
totalLength = 0
|
||||
|
||||
for item in sentences[edge_idx:]:
|
||||
if totalLength + item['size'] < max_cut:
|
||||
currentSentence += item['text']
|
||||
totalLength += item['size']
|
||||
else:
|
||||
#if by chance EOSX is at the end then it's acceptable
|
||||
if currentSentence.endswith(EOSX_str) and len(currentSentence.strip()) > min_chars_cut:
|
||||
sentencelist.append(currentSentence.strip())
|
||||
# otherwise don't cross hard cut
|
||||
elif EOSX_str not in currentSentence and len(currentSentence.strip()) > min_chars_cut:
|
||||
sentencelist.append(currentSentence.strip())
|
||||
|
||||
currentSentence = ''
|
||||
totalLength = 0
|
||||
break
|
||||
|
||||
print(f"+ Overlapping blocks: {len(sentencelist)-unique_blocks}")
|
||||
|
||||
num_EOS = 0
|
||||
for i in range(len(sentencelist)):
|
||||
if eos_to_hc:
|
||||
sentencelist[i] = sentencelist[i].replace(EOSX_str, EOS_str)
|
||||
else:
|
||||
sentencelist[i] = sentencelist[i].replace(EOSX_str, '')
|
||||
|
||||
#someone may have had stop strings in the raw text...
|
||||
sentencelist[i] = sentencelist[i].replace("</s></s>", EOS_str)
|
||||
num_EOS += sentencelist[i].count(EOS_str)
|
||||
|
||||
if num_EOS > 0:
|
||||
print(f"+ EOS count: {num_EOS}")
|
||||
|
||||
#final check for useless lines
|
||||
sentencelist = [item for item in sentencelist if item.strip() != "</s>"]
|
||||
sentencelist = [item for item in sentencelist if item.strip() != ""]
|
||||
|
||||
|
||||
if debug_slicer:
|
||||
# Write the log file
|
||||
Path('logs').mkdir(exist_ok=True)
|
||||
sentencelist_dict = {index: sentence for index, sentence in enumerate(sentencelist)}
|
||||
output_file = "logs/sentencelist.json"
|
||||
with open(output_file, 'w') as f:
|
||||
json.dump(sentencelist_dict, f,indent=2)
|
||||
|
||||
|
||||
return sentencelist
|
Loading…
Reference in New Issue
Block a user