mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-22 16:17:57 +01:00
Style changes
This commit is contained in:
parent
bfafd07f44
commit
e3810dff40
@ -1,19 +1,17 @@
|
|||||||
import json
|
import json
|
||||||
import math
|
import math
|
||||||
import random
|
import random
|
||||||
|
import shutil
|
||||||
import sys
|
import sys
|
||||||
import threading
|
import threading
|
||||||
import time
|
import time
|
||||||
import traceback
|
import traceback
|
||||||
|
from datetime import datetime
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
import torch
|
import torch
|
||||||
import transformers
|
import transformers
|
||||||
|
|
||||||
import shutil
|
|
||||||
from datetime import datetime
|
|
||||||
|
|
||||||
from datasets import Dataset, load_dataset
|
from datasets import Dataset, load_dataset
|
||||||
from peft import (
|
from peft import (
|
||||||
LoraConfig,
|
LoraConfig,
|
||||||
@ -223,7 +221,7 @@ def backup_adapter(input_folder):
|
|||||||
creation_date_str = creation_date.strftime("Backup-%Y-%m-%d")
|
creation_date_str = creation_date.strftime("Backup-%Y-%m-%d")
|
||||||
|
|
||||||
# Create the new subfolder
|
# Create the new subfolder
|
||||||
subfolder_path = Path(f"{input_folder}/{creation_date_str}")
|
subfolder_path = Path(f"{input_folder}/{creation_date_str}")
|
||||||
subfolder_path.mkdir(parents=True, exist_ok=True)
|
subfolder_path.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
# Check if the file already exists in the subfolder
|
# Check if the file already exists in the subfolder
|
||||||
@ -240,6 +238,7 @@ def backup_adapter(input_folder):
|
|||||||
except Exception as e:
|
except Exception as e:
|
||||||
print("An error occurred in backup_adapter:", str(e))
|
print("An error occurred in backup_adapter:", str(e))
|
||||||
|
|
||||||
|
|
||||||
def calc_trainable_parameters(model):
|
def calc_trainable_parameters(model):
|
||||||
trainable_params = 0
|
trainable_params = 0
|
||||||
all_param = 0
|
all_param = 0
|
||||||
@ -252,8 +251,8 @@ def calc_trainable_parameters(model):
|
|||||||
all_param += num_params
|
all_param += num_params
|
||||||
if param.requires_grad:
|
if param.requires_grad:
|
||||||
trainable_params += num_params
|
trainable_params += num_params
|
||||||
|
|
||||||
return trainable_params,all_param
|
return trainable_params, all_param
|
||||||
|
|
||||||
|
|
||||||
def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch_size: int, batch_size: int, epochs: int, learning_rate: str, lr_scheduler_type: str, lora_rank: int, lora_alpha: int, lora_dropout: float, cutoff_len: int, dataset: str, eval_dataset: str, format: str, eval_steps: int, raw_text_file: str, overlap_len: int, newline_favor_len: int, higher_rank_limit: bool, warmup_steps: int, optimizer: str, hard_cut_string: str, train_only_after: str, stop_at_loss: float):
|
def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch_size: int, batch_size: int, epochs: int, learning_rate: str, lr_scheduler_type: str, lora_rank: int, lora_alpha: int, lora_dropout: float, cutoff_len: int, dataset: str, eval_dataset: str, format: str, eval_steps: int, raw_text_file: str, overlap_len: int, newline_favor_len: int, higher_rank_limit: bool, warmup_steps: int, optimizer: str, hard_cut_string: str, train_only_after: str, stop_at_loss: float):
|
||||||
@ -559,10 +558,9 @@ def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch
|
|||||||
yield "Starting..."
|
yield "Starting..."
|
||||||
|
|
||||||
lora_trainable_param, lora_all_param = calc_trainable_parameters(lora_model)
|
lora_trainable_param, lora_all_param = calc_trainable_parameters(lora_model)
|
||||||
|
|
||||||
if lora_all_param>0:
|
|
||||||
print(f"Trainable params: {lora_trainable_param:,d} ({100 * lora_trainable_param / lora_all_param:.4f} %), All params: {lora_all_param:,d} (Model: {model_all_params:,d})")
|
|
||||||
|
|
||||||
|
if lora_all_param > 0:
|
||||||
|
print(f"Trainable params: {lora_trainable_param:,d} ({100 * lora_trainable_param / lora_all_param:.4f} %), All params: {lora_all_param:,d} (Model: {model_all_params:,d})")
|
||||||
|
|
||||||
train_log.update({"base_model_name": shared.model_name})
|
train_log.update({"base_model_name": shared.model_name})
|
||||||
train_log.update({"base_model_class": shared.model.__class__.__name__})
|
train_log.update({"base_model_class": shared.model.__class__.__name__})
|
||||||
|
Loading…
Reference in New Issue
Block a user