mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-26 09:40:20 +01:00
Add in-memory cache support for llama.cpp (#1936)
This commit is contained in:
parent
0227e738ed
commit
e657dd342d
@ -230,6 +230,7 @@ Optionally, you can use the following command-line flags:
|
|||||||
| `--n_batch` | Maximum number of prompt tokens to batch together when calling llama_eval. |
|
| `--n_batch` | Maximum number of prompt tokens to batch together when calling llama_eval. |
|
||||||
| `--no-mmap` | Prevent mmap from being used. |
|
| `--no-mmap` | Prevent mmap from being used. |
|
||||||
| `--mlock` | Force the system to keep the model in RAM. |
|
| `--mlock` | Force the system to keep the model in RAM. |
|
||||||
|
| `--cache-capacity CACHE_CAPACITY` | Maximum cache capacity. Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed. |
|
||||||
| `--n-gpu-layers N_GPU_LAYERS` | Number of layers to offload to the GPU. Only works if llama-cpp-python was compiled with BLAS. Set this to 1000000000 to offload all layers to the GPU. |
|
| `--n-gpu-layers N_GPU_LAYERS` | Number of layers to offload to the GPU. Only works if llama-cpp-python was compiled with BLAS. Set this to 1000000000 to offload all layers to the GPU. |
|
||||||
|
|
||||||
#### GPTQ
|
#### GPTQ
|
||||||
|
@ -6,6 +6,9 @@ Documentation:
|
|||||||
https://abetlen.github.io/llama-cpp-python/
|
https://abetlen.github.io/llama-cpp-python/
|
||||||
'''
|
'''
|
||||||
|
|
||||||
|
import logging
|
||||||
|
import re
|
||||||
|
|
||||||
from llama_cpp import Llama, LlamaCache
|
from llama_cpp import Llama, LlamaCache
|
||||||
|
|
||||||
from modules import shared
|
from modules import shared
|
||||||
@ -23,6 +26,17 @@ class LlamaCppModel:
|
|||||||
def from_pretrained(self, path):
|
def from_pretrained(self, path):
|
||||||
result = self()
|
result = self()
|
||||||
|
|
||||||
|
cache_capacity = 0
|
||||||
|
if shared.args.cache_capacity is not None:
|
||||||
|
if 'GiB' in shared.args.cache_capacity:
|
||||||
|
cache_capacity = int(re.sub('[a-zA-Z]', '', shared.args.cache_capacity)) * 1000 * 1000 * 1000
|
||||||
|
elif 'MiB' in shared.args.cache_capacity:
|
||||||
|
cache_capacity = int(re.sub('[a-zA-Z]', '', shared.args.cache_capacity)) * 1000 * 1000
|
||||||
|
else:
|
||||||
|
cache_capacity = int(shared.args.cache_capacity)
|
||||||
|
|
||||||
|
logging.info("Cache capacity is " + str(cache_capacity) + " bytes")
|
||||||
|
|
||||||
params = {
|
params = {
|
||||||
'model_path': str(path),
|
'model_path': str(path),
|
||||||
'n_ctx': 2048,
|
'n_ctx': 2048,
|
||||||
@ -34,7 +48,8 @@ class LlamaCppModel:
|
|||||||
'n_gpu_layers': shared.args.n_gpu_layers
|
'n_gpu_layers': shared.args.n_gpu_layers
|
||||||
}
|
}
|
||||||
self.model = Llama(**params)
|
self.model = Llama(**params)
|
||||||
self.model.set_cache(LlamaCache)
|
if cache_capacity > 0:
|
||||||
|
self.model.set_cache(LlamaCache(capacity_bytes=cache_capacity))
|
||||||
|
|
||||||
# This is ugly, but the model and the tokenizer are the same object in this library.
|
# This is ugly, but the model and the tokenizer are the same object in this library.
|
||||||
return result, result
|
return result, result
|
||||||
@ -45,23 +60,23 @@ class LlamaCppModel:
|
|||||||
return self.model.tokenize(string)
|
return self.model.tokenize(string)
|
||||||
|
|
||||||
def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=1, callback=None):
|
def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=1, callback=None):
|
||||||
if type(context) is str:
|
context = context if type(context) is str else context.decode()
|
||||||
context = context.encode()
|
completion_chunks = self.model.create_completion(
|
||||||
tokens = self.model.tokenize(context)
|
prompt=context,
|
||||||
|
max_tokens=token_count,
|
||||||
output = b""
|
temperature=temperature,
|
||||||
count = 0
|
top_p=top_p,
|
||||||
for token in self.model.generate(tokens, top_k=top_k, top_p=top_p, temp=temperature, repeat_penalty=repetition_penalty):
|
top_k=top_k,
|
||||||
text = self.model.detokenize([token])
|
repeat_penalty=repetition_penalty,
|
||||||
|
stream=True
|
||||||
|
)
|
||||||
|
output = ""
|
||||||
|
for completion_chunk in completion_chunks:
|
||||||
|
text = completion_chunk['choices'][0]['text']
|
||||||
output += text
|
output += text
|
||||||
if callback:
|
if callback:
|
||||||
callback(text.decode())
|
callback(text)
|
||||||
|
return output
|
||||||
count += 1
|
|
||||||
if count >= token_count or (token == self.model.token_eos()):
|
|
||||||
break
|
|
||||||
|
|
||||||
return output.decode()
|
|
||||||
|
|
||||||
def generate_with_streaming(self, **kwargs):
|
def generate_with_streaming(self, **kwargs):
|
||||||
with Iteratorize(self.generate, kwargs, callback=None) as generator:
|
with Iteratorize(self.generate, kwargs, callback=None) as generator:
|
||||||
|
@ -123,6 +123,7 @@ parser.add_argument('--threads', type=int, default=0, help='Number of threads to
|
|||||||
parser.add_argument('--n_batch', type=int, default=512, help='Maximum number of prompt tokens to batch together when calling llama_eval.')
|
parser.add_argument('--n_batch', type=int, default=512, help='Maximum number of prompt tokens to batch together when calling llama_eval.')
|
||||||
parser.add_argument('--no-mmap', action='store_true', help='Prevent mmap from being used.')
|
parser.add_argument('--no-mmap', action='store_true', help='Prevent mmap from being used.')
|
||||||
parser.add_argument('--mlock', action='store_true', help='Force the system to keep the model in RAM.')
|
parser.add_argument('--mlock', action='store_true', help='Force the system to keep the model in RAM.')
|
||||||
|
parser.add_argument('--cache-capacity', type=str, help='Maximum cache capacity. Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed.')
|
||||||
parser.add_argument('--n-gpu-layers', type=int, default=0, help='Number of layers to offload to the GPU.')
|
parser.add_argument('--n-gpu-layers', type=int, default=0, help='Number of layers to offload to the GPU.')
|
||||||
|
|
||||||
# GPTQ
|
# GPTQ
|
||||||
|
Loading…
Reference in New Issue
Block a user