mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-22 16:17:57 +01:00
commit
e6eda5c2da
20
README.md
20
README.md
@ -156,7 +156,7 @@ text-generation-webui
|
|||||||
|
|
||||||
In the "Model" tab of the UI, those models can be automatically downloaded from Hugging Face. You can also download them via the command-line with `python download-model.py organization/model`.
|
In the "Model" tab of the UI, those models can be automatically downloaded from Hugging Face. You can also download them via the command-line with `python download-model.py organization/model`.
|
||||||
|
|
||||||
* GGML models are a single file and should be placed directly into `models`. Example:
|
* GGML/GGUF models are a single file and should be placed directly into `models`. Example:
|
||||||
|
|
||||||
```
|
```
|
||||||
text-generation-webui
|
text-generation-webui
|
||||||
@ -258,7 +258,7 @@ Optionally, you can use the following command-line flags:
|
|||||||
| `--quant_type QUANT_TYPE` | quant_type for 4-bit. Valid options: nf4, fp4. |
|
| `--quant_type QUANT_TYPE` | quant_type for 4-bit. Valid options: nf4, fp4. |
|
||||||
| `--use_double_quant` | use_double_quant for 4-bit. |
|
| `--use_double_quant` | use_double_quant for 4-bit. |
|
||||||
|
|
||||||
#### GGML (for llama.cpp and ctransformers)
|
#### GGML/GGUF (for llama.cpp and ctransformers)
|
||||||
|
|
||||||
| Flag | Description |
|
| Flag | Description |
|
||||||
|-------------|-------------|
|
|-------------|-------------|
|
||||||
@ -269,16 +269,16 @@ Optionally, you can use the following command-line flags:
|
|||||||
|
|
||||||
#### llama.cpp
|
#### llama.cpp
|
||||||
|
|
||||||
| Flag | Description |
|
| Flag | Description |
|
||||||
|-------------|-------------|
|
|---------------|---------------|
|
||||||
| `--no-mmap` | Prevent mmap from being used. |
|
| `--no-mmap` | Prevent mmap from being used. |
|
||||||
| `--mlock` | Force the system to keep the model in RAM. |
|
| `--mlock` | Force the system to keep the model in RAM. |
|
||||||
| `--mul_mat_q` | Activate new mulmat kernels. |
|
| `--mul_mat_q` | Activate new mulmat kernels. |
|
||||||
| `--cache-capacity CACHE_CAPACITY` | Maximum cache capacity. Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed. |
|
| `--cache-capacity CACHE_CAPACITY` | Maximum cache capacity. Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed. |
|
||||||
| `--tensor_split TENSOR_SPLIT` | Split the model across multiple GPUs, comma-separated list of proportions, e.g. 18,17 |
|
| `--tensor_split TENSOR_SPLIT` | Split the model across multiple GPUs, comma-separated list of proportions, e.g. 18,17 |
|
||||||
| `--llama_cpp_seed SEED` | Seed for llama-cpp models. Default 0 (random). |
|
| `--llama_cpp_seed SEED` | Seed for llama-cpp models. Default 0 (random). |
|
||||||
| `--n_gqa N_GQA` | grouped-query attention. Must be 8 for llama-2 70b. |
|
| `--n_gqa N_GQA` | GGML only (not used by GGUF): Grouped-Query Attention. Must be 8 for llama-2 70b. |
|
||||||
| `--rms_norm_eps RMS_NORM_EPS` | 5e-6 is a good value for llama-2 models. |
|
| `--rms_norm_eps RMS_NORM_EPS` | GGML only (not used by GGUF): 5e-6 is a good value for llama-2 models. |
|
||||||
| `--cpu` | Use the CPU version of llama-cpp-python instead of the GPU-accelerated version. |
|
| `--cpu` | Use the CPU version of llama-cpp-python instead of the GPU-accelerated version. |
|
||||||
|`--cfg-cache` | llamacpp_HF: Create an additional cache for CFG negative prompts. |
|
|`--cfg-cache` | llamacpp_HF: Create an additional cache for CFG negative prompts. |
|
||||||
|
|
||||||
|
@ -57,7 +57,8 @@ class ModelDownloader:
|
|||||||
classifications = []
|
classifications = []
|
||||||
has_pytorch = False
|
has_pytorch = False
|
||||||
has_pt = False
|
has_pt = False
|
||||||
# has_ggml = False
|
has_gguf = False
|
||||||
|
has_ggml = False
|
||||||
has_safetensors = False
|
has_safetensors = False
|
||||||
is_lora = False
|
is_lora = False
|
||||||
while True:
|
while True:
|
||||||
@ -78,10 +79,11 @@ class ModelDownloader:
|
|||||||
is_pytorch = re.match(r"(pytorch|adapter|gptq)_model.*\.bin", fname)
|
is_pytorch = re.match(r"(pytorch|adapter|gptq)_model.*\.bin", fname)
|
||||||
is_safetensors = re.match(r".*\.safetensors", fname)
|
is_safetensors = re.match(r".*\.safetensors", fname)
|
||||||
is_pt = re.match(r".*\.pt", fname)
|
is_pt = re.match(r".*\.pt", fname)
|
||||||
|
is_gguf = re.match(r'.*\.gguf', fname)
|
||||||
is_ggml = re.match(r".*ggml.*\.bin", fname)
|
is_ggml = re.match(r".*ggml.*\.bin", fname)
|
||||||
is_tokenizer = re.match(r"(tokenizer|ice|spiece).*\.model", fname)
|
is_tokenizer = re.match(r"(tokenizer|ice|spiece).*\.model", fname)
|
||||||
is_text = re.match(r".*\.(txt|json|py|md)", fname) or is_tokenizer
|
is_text = re.match(r".*\.(txt|json|py|md)", fname) or is_tokenizer
|
||||||
if any((is_pytorch, is_safetensors, is_pt, is_ggml, is_tokenizer, is_text)):
|
if any((is_pytorch, is_safetensors, is_pt, is_gguf, is_ggml, is_tokenizer, is_text)):
|
||||||
if 'lfs' in dict[i]:
|
if 'lfs' in dict[i]:
|
||||||
sha256.append([fname, dict[i]['lfs']['oid']])
|
sha256.append([fname, dict[i]['lfs']['oid']])
|
||||||
|
|
||||||
@ -101,8 +103,11 @@ class ModelDownloader:
|
|||||||
elif is_pt:
|
elif is_pt:
|
||||||
has_pt = True
|
has_pt = True
|
||||||
classifications.append('pt')
|
classifications.append('pt')
|
||||||
|
elif is_gguf:
|
||||||
|
has_gguf = True
|
||||||
|
classifications.append('gguf')
|
||||||
elif is_ggml:
|
elif is_ggml:
|
||||||
# has_ggml = True
|
has_ggml = True
|
||||||
classifications.append('ggml')
|
classifications.append('ggml')
|
||||||
|
|
||||||
cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50'
|
cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50'
|
||||||
@ -115,6 +120,12 @@ class ModelDownloader:
|
|||||||
if classifications[i] in ['pytorch', 'pt']:
|
if classifications[i] in ['pytorch', 'pt']:
|
||||||
links.pop(i)
|
links.pop(i)
|
||||||
|
|
||||||
|
# If both GGML and GGUF are available, download GGUF only
|
||||||
|
if has_ggml and has_gguf:
|
||||||
|
for i in range(len(classifications) - 1, -1, -1):
|
||||||
|
if classifications[i] == 'ggml':
|
||||||
|
links.pop(i)
|
||||||
|
|
||||||
return links, sha256, is_lora
|
return links, sha256, is_lora
|
||||||
|
|
||||||
def get_output_folder(self, model, branch, is_lora, base_folder=None):
|
def get_output_folder(self, model, branch, is_lora, base_folder=None):
|
||||||
|
@ -9,27 +9,43 @@ from transformers.modeling_outputs import CausalLMOutputWithPast
|
|||||||
|
|
||||||
from modules import RoPE, shared
|
from modules import RoPE, shared
|
||||||
from modules.logging_colors import logger
|
from modules.logging_colors import logger
|
||||||
|
from modules.utils import is_gguf
|
||||||
|
|
||||||
import llama_cpp
|
import llama_cpp
|
||||||
|
|
||||||
|
try:
|
||||||
|
import llama_cpp_ggml
|
||||||
|
except:
|
||||||
|
llama_cpp_ggml = llama_cpp
|
||||||
|
|
||||||
if torch.cuda.is_available() and not torch.version.hip:
|
if torch.cuda.is_available() and not torch.version.hip:
|
||||||
try:
|
try:
|
||||||
import llama_cpp_cuda
|
import llama_cpp_cuda
|
||||||
except:
|
except:
|
||||||
llama_cpp_cuda = None
|
llama_cpp_cuda = None
|
||||||
|
try:
|
||||||
|
import llama_cpp_ggml_cuda
|
||||||
|
except:
|
||||||
|
llama_cpp_ggml_cuda = llama_cpp_cuda
|
||||||
else:
|
else:
|
||||||
llama_cpp_cuda = None
|
llama_cpp_cuda = None
|
||||||
|
llama_cpp_ggml_cuda = None
|
||||||
|
|
||||||
|
|
||||||
def llama_cpp_lib():
|
def llama_cpp_lib(model_file: Union[str, Path] = None):
|
||||||
if shared.args.cpu or llama_cpp_cuda is None:
|
if model_file is not None:
|
||||||
return llama_cpp
|
gguf_model = is_gguf(model_file)
|
||||||
else:
|
else:
|
||||||
return llama_cpp_cuda
|
gguf_model = True
|
||||||
|
|
||||||
|
if shared.args.cpu or llama_cpp_cuda is None:
|
||||||
|
return llama_cpp if gguf_model else llama_cpp_ggml
|
||||||
|
else:
|
||||||
|
return llama_cpp_cuda if gguf_model else llama_cpp_ggml_cuda
|
||||||
|
|
||||||
|
|
||||||
class LlamacppHF(PreTrainedModel):
|
class LlamacppHF(PreTrainedModel):
|
||||||
def __init__(self, model):
|
def __init__(self, model, path):
|
||||||
super().__init__(PretrainedConfig())
|
super().__init__(PretrainedConfig())
|
||||||
self.model = model
|
self.model = model
|
||||||
self.generation_config = GenerationConfig()
|
self.generation_config = GenerationConfig()
|
||||||
@ -48,7 +64,7 @@ class LlamacppHF(PreTrainedModel):
|
|||||||
'n_tokens': self.model.n_tokens,
|
'n_tokens': self.model.n_tokens,
|
||||||
'input_ids': self.model.input_ids.copy(),
|
'input_ids': self.model.input_ids.copy(),
|
||||||
'scores': self.model.scores.copy(),
|
'scores': self.model.scores.copy(),
|
||||||
'ctx': llama_cpp_lib().llama_new_context_with_model(model.model, model.params)
|
'ctx': llama_cpp_lib(path).llama_new_context_with_model(model.model, model.params)
|
||||||
}
|
}
|
||||||
|
|
||||||
def _validate_model_class(self):
|
def _validate_model_class(self):
|
||||||
@ -165,7 +181,7 @@ class LlamacppHF(PreTrainedModel):
|
|||||||
if path.is_file():
|
if path.is_file():
|
||||||
model_file = path
|
model_file = path
|
||||||
else:
|
else:
|
||||||
model_file = list(path.glob('*ggml*.bin'))[0]
|
model_file = (list(path.glob('*.gguf*')) + list(path.glob('*ggml*.bin')))[0]
|
||||||
|
|
||||||
logger.info(f"llama.cpp weights detected: {model_file}\n")
|
logger.info(f"llama.cpp weights detected: {model_file}\n")
|
||||||
|
|
||||||
@ -188,12 +204,17 @@ class LlamacppHF(PreTrainedModel):
|
|||||||
'rope_freq_base': RoPE.get_rope_freq_base(shared.args.alpha_value, shared.args.rope_freq_base),
|
'rope_freq_base': RoPE.get_rope_freq_base(shared.args.alpha_value, shared.args.rope_freq_base),
|
||||||
'tensor_split': tensor_split_list,
|
'tensor_split': tensor_split_list,
|
||||||
'rope_freq_scale': 1.0 / shared.args.compress_pos_emb,
|
'rope_freq_scale': 1.0 / shared.args.compress_pos_emb,
|
||||||
'n_gqa': shared.args.n_gqa or None,
|
|
||||||
'rms_norm_eps': shared.args.rms_norm_eps or None,
|
|
||||||
'logits_all': True,
|
'logits_all': True,
|
||||||
}
|
}
|
||||||
|
|
||||||
Llama = llama_cpp_lib().Llama
|
if not is_gguf(model_file):
|
||||||
|
ggml_params = {
|
||||||
|
'n_gqa': shared.args.n_gqa or None,
|
||||||
|
'rms_norm_eps': shared.args.rms_norm_eps or None,
|
||||||
|
}
|
||||||
|
params = params | ggml_params
|
||||||
|
|
||||||
|
Llama = llama_cpp_lib(model_file).Llama
|
||||||
model = Llama(**params)
|
model = Llama(**params)
|
||||||
|
|
||||||
return LlamacppHF(model)
|
return LlamacppHF(model, model_file)
|
||||||
|
@ -1,5 +1,7 @@
|
|||||||
import re
|
import re
|
||||||
from functools import partial
|
from functools import partial
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Union
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
@ -7,23 +9,39 @@ from modules import RoPE, shared
|
|||||||
from modules.callbacks import Iteratorize
|
from modules.callbacks import Iteratorize
|
||||||
from modules.logging_colors import logger
|
from modules.logging_colors import logger
|
||||||
from modules.text_generation import get_max_prompt_length
|
from modules.text_generation import get_max_prompt_length
|
||||||
|
from modules.utils import is_gguf
|
||||||
|
|
||||||
import llama_cpp
|
import llama_cpp
|
||||||
|
|
||||||
|
try:
|
||||||
|
import llama_cpp_ggml
|
||||||
|
except:
|
||||||
|
llama_cpp_ggml = llama_cpp
|
||||||
|
|
||||||
if torch.cuda.is_available() and not torch.version.hip:
|
if torch.cuda.is_available() and not torch.version.hip:
|
||||||
try:
|
try:
|
||||||
import llama_cpp_cuda
|
import llama_cpp_cuda
|
||||||
except:
|
except:
|
||||||
llama_cpp_cuda = None
|
llama_cpp_cuda = None
|
||||||
|
try:
|
||||||
|
import llama_cpp_ggml_cuda
|
||||||
|
except:
|
||||||
|
llama_cpp_ggml_cuda = llama_cpp_cuda
|
||||||
else:
|
else:
|
||||||
llama_cpp_cuda = None
|
llama_cpp_cuda = None
|
||||||
|
llama_cpp_ggml_cuda = None
|
||||||
|
|
||||||
|
|
||||||
def llama_cpp_lib():
|
def llama_cpp_lib(model_file: Union[str, Path] = None):
|
||||||
if shared.args.cpu or llama_cpp_cuda is None:
|
if model_file is not None:
|
||||||
return llama_cpp
|
gguf_model = is_gguf(model_file)
|
||||||
else:
|
else:
|
||||||
return llama_cpp_cuda
|
gguf_model = True
|
||||||
|
|
||||||
|
if shared.args.cpu or llama_cpp_cuda is None:
|
||||||
|
return llama_cpp if gguf_model else llama_cpp_ggml
|
||||||
|
else:
|
||||||
|
return llama_cpp_cuda if gguf_model else llama_cpp_ggml_cuda
|
||||||
|
|
||||||
|
|
||||||
def ban_eos_logits_processor(eos_token, input_ids, logits):
|
def ban_eos_logits_processor(eos_token, input_ids, logits):
|
||||||
@ -41,8 +59,8 @@ class LlamaCppModel:
|
|||||||
@classmethod
|
@classmethod
|
||||||
def from_pretrained(self, path):
|
def from_pretrained(self, path):
|
||||||
|
|
||||||
Llama = llama_cpp_lib().Llama
|
Llama = llama_cpp_lib(path).Llama
|
||||||
LlamaCache = llama_cpp_lib().LlamaCache
|
LlamaCache = llama_cpp_lib(path).LlamaCache
|
||||||
|
|
||||||
result = self()
|
result = self()
|
||||||
cache_capacity = 0
|
cache_capacity = 0
|
||||||
@ -75,10 +93,15 @@ class LlamaCppModel:
|
|||||||
'rope_freq_base': RoPE.get_rope_freq_base(shared.args.alpha_value, shared.args.rope_freq_base),
|
'rope_freq_base': RoPE.get_rope_freq_base(shared.args.alpha_value, shared.args.rope_freq_base),
|
||||||
'tensor_split': tensor_split_list,
|
'tensor_split': tensor_split_list,
|
||||||
'rope_freq_scale': 1.0 / shared.args.compress_pos_emb,
|
'rope_freq_scale': 1.0 / shared.args.compress_pos_emb,
|
||||||
'n_gqa': shared.args.n_gqa or None,
|
|
||||||
'rms_norm_eps': shared.args.rms_norm_eps or None,
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if not is_gguf(path):
|
||||||
|
ggml_params = {
|
||||||
|
'n_gqa': shared.args.n_gqa or None,
|
||||||
|
'rms_norm_eps': shared.args.rms_norm_eps or None,
|
||||||
|
}
|
||||||
|
params = params | ggml_params
|
||||||
|
|
||||||
result.model = Llama(**params)
|
result.model = Llama(**params)
|
||||||
if cache_capacity > 0:
|
if cache_capacity > 0:
|
||||||
result.model.set_cache(LlamaCache(capacity_bytes=cache_capacity))
|
result.model.set_cache(LlamaCache(capacity_bytes=cache_capacity))
|
||||||
|
@ -241,7 +241,7 @@ def llamacpp_loader(model_name):
|
|||||||
if path.is_file():
|
if path.is_file():
|
||||||
model_file = path
|
model_file = path
|
||||||
else:
|
else:
|
||||||
model_file = list(Path(f'{shared.args.model_dir}/{model_name}').glob('*ggml*.bin'))[0]
|
model_file = (list(Path(f'{shared.args.model_dir}/{model_name}').glob('*.gguf*')) + list(Path(f'{shared.args.model_dir}/{model_name}').glob('*ggml*.bin')))[0]
|
||||||
|
|
||||||
logger.info(f"llama.cpp weights detected: {model_file}")
|
logger.info(f"llama.cpp weights detected: {model_file}")
|
||||||
model, tokenizer = LlamaCppModel.from_pretrained(model_file)
|
model, tokenizer = LlamaCppModel.from_pretrained(model_file)
|
||||||
|
@ -24,9 +24,9 @@ def infer_loader(model_name):
|
|||||||
loader = None
|
loader = None
|
||||||
elif Path(f'{shared.args.model_dir}/{model_name}/quantize_config.json').exists() or ('wbits' in model_settings and type(model_settings['wbits']) is int and model_settings['wbits'] > 0):
|
elif Path(f'{shared.args.model_dir}/{model_name}/quantize_config.json').exists() or ('wbits' in model_settings and type(model_settings['wbits']) is int and model_settings['wbits'] > 0):
|
||||||
loader = 'AutoGPTQ'
|
loader = 'AutoGPTQ'
|
||||||
elif len(list(path_to_model.glob('*ggml*.bin'))) > 0:
|
elif len(list(path_to_model.glob('*.gguf*')) + list(path_to_model.glob('*ggml*.bin'))) > 0:
|
||||||
loader = 'llama.cpp'
|
loader = 'llama.cpp'
|
||||||
elif re.match(r'.*ggml.*\.bin', model_name.lower()):
|
elif re.match(r'.*\.gguf|.*ggml.*\.bin', model_name.lower()):
|
||||||
loader = 'llama.cpp'
|
loader = 'llama.cpp'
|
||||||
elif re.match(r'.*rwkv.*\.pth', model_name.lower()):
|
elif re.match(r'.*rwkv.*\.pth', model_name.lower()):
|
||||||
loader = 'RWKV'
|
loader = 'RWKV'
|
||||||
|
@ -80,8 +80,8 @@ def create_ui():
|
|||||||
shared.gradio['n_ctx'] = gr.Slider(minimum=0, maximum=16384, step=256, label="n_ctx", value=shared.args.n_ctx)
|
shared.gradio['n_ctx'] = gr.Slider(minimum=0, maximum=16384, step=256, label="n_ctx", value=shared.args.n_ctx)
|
||||||
shared.gradio['threads'] = gr.Slider(label="threads", minimum=0, step=1, maximum=32, value=shared.args.threads)
|
shared.gradio['threads'] = gr.Slider(label="threads", minimum=0, step=1, maximum=32, value=shared.args.threads)
|
||||||
shared.gradio['n_batch'] = gr.Slider(label="n_batch", minimum=1, maximum=2048, value=shared.args.n_batch)
|
shared.gradio['n_batch'] = gr.Slider(label="n_batch", minimum=1, maximum=2048, value=shared.args.n_batch)
|
||||||
shared.gradio['n_gqa'] = gr.Slider(minimum=0, maximum=16, step=1, label="n_gqa", value=shared.args.n_gqa, info='grouped-query attention. Must be 8 for llama-2 70b.')
|
shared.gradio['n_gqa'] = gr.Slider(minimum=0, maximum=16, step=1, label="n_gqa", value=shared.args.n_gqa, info='GGML only (not used by GGUF): Grouped-Query Attention. Must be 8 for llama-2 70b.')
|
||||||
shared.gradio['rms_norm_eps'] = gr.Slider(minimum=0, maximum=1e-5, step=1e-6, label="rms_norm_eps", value=shared.args.rms_norm_eps, info='5e-6 is a good value for llama-2 models.')
|
shared.gradio['rms_norm_eps'] = gr.Slider(minimum=0, maximum=1e-5, step=1e-6, label="rms_norm_eps", value=shared.args.rms_norm_eps, info='GGML only (not used by GGUF): 5e-6 is a good value for llama-2 models.')
|
||||||
|
|
||||||
shared.gradio['wbits'] = gr.Dropdown(label="wbits", choices=["None", 1, 2, 3, 4, 8], value=str(shared.args.wbits) if shared.args.wbits > 0 else "None")
|
shared.gradio['wbits'] = gr.Dropdown(label="wbits", choices=["None", 1, 2, 3, 4, 8], value=str(shared.args.wbits) if shared.args.wbits > 0 else "None")
|
||||||
shared.gradio['groupsize'] = gr.Dropdown(label="groupsize", choices=["None", 32, 64, 128, 1024], value=str(shared.args.groupsize) if shared.args.groupsize > 0 else "None")
|
shared.gradio['groupsize'] = gr.Dropdown(label="groupsize", choices=["None", 32, 64, 128, 1024], value=str(shared.args.groupsize) if shared.args.groupsize > 0 else "None")
|
||||||
|
@ -2,6 +2,7 @@ import os
|
|||||||
import re
|
import re
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
from typing import Union
|
||||||
|
|
||||||
from modules import shared
|
from modules import shared
|
||||||
from modules.logging_colors import logger
|
from modules.logging_colors import logger
|
||||||
@ -124,3 +125,15 @@ def get_datasets(path: str, ext: str):
|
|||||||
|
|
||||||
def get_available_chat_styles():
|
def get_available_chat_styles():
|
||||||
return sorted(set(('-'.join(k.stem.split('-')[1:]) for k in Path('css').glob('chat_style*.css'))), key=natural_keys)
|
return sorted(set(('-'.join(k.stem.split('-')[1:]) for k in Path('css').glob('chat_style*.css'))), key=natural_keys)
|
||||||
|
|
||||||
|
|
||||||
|
def is_gguf(path: Union[str, Path]) -> bool:
|
||||||
|
'''
|
||||||
|
Determines if a llama.cpp model is in GGUF format
|
||||||
|
Copied from ctransformers utils.py
|
||||||
|
'''
|
||||||
|
path = str(Path(path).resolve())
|
||||||
|
with open(path, "rb") as f:
|
||||||
|
magic = f.read(4)
|
||||||
|
|
||||||
|
return magic == "GGUF".encode()
|
||||||
|
@ -22,19 +22,31 @@ tensorboard
|
|||||||
tqdm
|
tqdm
|
||||||
wandb
|
wandb
|
||||||
|
|
||||||
|
# bitsandbytes
|
||||||
bitsandbytes==0.41.1; platform_system != "Windows"
|
bitsandbytes==0.41.1; platform_system != "Windows"
|
||||||
https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.1-py3-none-win_amd64.whl; platform_system == "Windows"
|
https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.1-py3-none-win_amd64.whl; platform_system == "Windows"
|
||||||
|
|
||||||
|
# AutoGPTQ
|
||||||
https://github.com/PanQiWei/AutoGPTQ/releases/download/v0.4.2/auto_gptq-0.4.2+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows"
|
https://github.com/PanQiWei/AutoGPTQ/releases/download/v0.4.2/auto_gptq-0.4.2+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows"
|
||||||
https://github.com/PanQiWei/AutoGPTQ/releases/download/v0.4.2/auto_gptq-0.4.2+cu117-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
https://github.com/PanQiWei/AutoGPTQ/releases/download/v0.4.2/auto_gptq-0.4.2+cu117-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||||
|
|
||||||
|
# ExLlama
|
||||||
https://github.com/jllllll/exllama/releases/download/0.0.10/exllama-0.0.10+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows"
|
https://github.com/jllllll/exllama/releases/download/0.0.10/exllama-0.0.10+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows"
|
||||||
https://github.com/jllllll/exllama/releases/download/0.0.10/exllama-0.0.10+cu117-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
https://github.com/jllllll/exllama/releases/download/0.0.10/exllama-0.0.10+cu117-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||||
|
|
||||||
# llama-cpp-python without GPU support
|
# llama-cpp-python without GPU support
|
||||||
llama-cpp-python==0.1.78; platform_system != "Windows"
|
llama-cpp-python==0.1.79; platform_system != "Windows"
|
||||||
https://github.com/abetlen/llama-cpp-python/releases/download/v0.1.78/llama_cpp_python-0.1.78-cp310-cp310-win_amd64.whl; platform_system == "Windows"
|
https://github.com/abetlen/llama-cpp-python/releases/download/v0.1.79/llama_cpp_python-0.1.79-cp310-cp310-win_amd64.whl; platform_system == "Windows"
|
||||||
|
|
||||||
# llama-cpp-python with CUDA support
|
# llama-cpp-python with CUDA support
|
||||||
https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.1.78+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows"
|
https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.1.79+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows"
|
||||||
https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.1.78+cu117-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.1.79+cu117-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||||
|
|
||||||
|
# llama-cpp-python with GGML support
|
||||||
|
https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python_ggml-0.1.78+cpuavx2-cp310-cp310-win_amd64.whl; platform_system == "Windows"
|
||||||
|
https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python_ggml-0.1.78+cpuavx2-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||||
|
https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_ggml_cuda-0.1.78+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows"
|
||||||
|
https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_ggml_cuda-0.1.78+cu117-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||||
|
|
||||||
# GPTQ-for-LLaMa
|
# GPTQ-for-LLaMa
|
||||||
https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.0/gptq_for_llama-0.1.0+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows"
|
https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.0/gptq_for_llama-0.1.0+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows"
|
||||||
|
Loading…
Reference in New Issue
Block a user