mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2025-01-23 10:09:20 +01:00
Merge branch 'main' into pt-path-changes
This commit is contained in:
commit
e9dbdafb14
@ -54,7 +54,7 @@ The third line assumes that you have an NVIDIA GPU.
|
||||
pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/rocm5.2
|
||||
```
|
||||
|
||||
* If you are running in CPU mode, replace the third command with this one:
|
||||
* If you are running it in CPU mode, replace the third command with this one:
|
||||
|
||||
```
|
||||
conda install pytorch torchvision torchaudio git -c pytorch
|
||||
|
@ -5,7 +5,9 @@ Example:
|
||||
python download-model.py facebook/opt-1.3b
|
||||
|
||||
'''
|
||||
|
||||
import argparse
|
||||
import base64
|
||||
import json
|
||||
import multiprocessing
|
||||
import re
|
||||
@ -93,23 +95,28 @@ facebook/opt-1.3b
|
||||
def get_download_links_from_huggingface(model, branch):
|
||||
base = "https://huggingface.co"
|
||||
page = f"/api/models/{model}/tree/{branch}?cursor="
|
||||
cursor = b""
|
||||
|
||||
links = []
|
||||
classifications = []
|
||||
has_pytorch = False
|
||||
has_safetensors = False
|
||||
while page is not None:
|
||||
content = requests.get(f"{base}{page}").content
|
||||
while True:
|
||||
content = requests.get(f"{base}{page}{cursor.decode()}").content
|
||||
|
||||
dict = json.loads(content)
|
||||
if len(dict) == 0:
|
||||
break
|
||||
|
||||
for i in range(len(dict)):
|
||||
fname = dict[i]['path']
|
||||
|
||||
is_pytorch = re.match("pytorch_model.*\.bin", fname)
|
||||
is_safetensors = re.match("model.*\.safetensors", fname)
|
||||
is_text = re.match(".*\.(txt|json)", fname)
|
||||
is_tokenizer = re.match("tokenizer.*\.model", fname)
|
||||
is_text = re.match(".*\.(txt|json)", fname) or is_tokenizer
|
||||
|
||||
if is_text or is_safetensors or is_pytorch:
|
||||
if any((is_pytorch, is_safetensors, is_text, is_tokenizer)):
|
||||
if is_text:
|
||||
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
|
||||
classifications.append('text')
|
||||
@ -123,8 +130,9 @@ def get_download_links_from_huggingface(model, branch):
|
||||
has_pytorch = True
|
||||
classifications.append('pytorch')
|
||||
|
||||
#page = dict['nextUrl']
|
||||
page = None
|
||||
cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50'
|
||||
cursor = base64.b64encode(cursor)
|
||||
cursor = cursor.replace(b'=', b'%3D')
|
||||
|
||||
# If both pytorch and safetensors are available, download safetensors only
|
||||
if has_pytorch and has_safetensors:
|
||||
|
@ -116,8 +116,23 @@ def load_model(model_name):
|
||||
print(f"Could not find {pt_model}, exiting...")
|
||||
exit()
|
||||
|
||||
model = load_quant(path_to_model, pt_path, 4)
|
||||
model = model.to(torch.device('cuda:0'))
|
||||
model = load_quant(path_to_model, Path(f"models/{pt_model}"), 4)
|
||||
|
||||
# Multi-GPU setup
|
||||
if shared.args.gpu_memory:
|
||||
import accelerate
|
||||
|
||||
max_memory = {}
|
||||
for i in range(len(shared.args.gpu_memory)):
|
||||
max_memory[i] = f"{shared.args.gpu_memory[i]}GiB"
|
||||
max_memory['cpu'] = f"{shared.args.cpu_memory or '99'}GiB"
|
||||
|
||||
device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LLaMADecoderLayer"])
|
||||
model = accelerate.dispatch_model(model, device_map=device_map)
|
||||
|
||||
# Single GPU
|
||||
else:
|
||||
model = model.to(torch.device('cuda:0'))
|
||||
|
||||
# Custom
|
||||
else:
|
||||
|
Loading…
Reference in New Issue
Block a user