mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2025-01-05 18:44:59 +01:00
Add ExLlama+LoRA support (#2756)
This commit is contained in:
parent
a1cac88c19
commit
eb30f4441f
170
modules/LoRA.py
170
modules/LoRA.py
@ -7,85 +7,117 @@ import modules.shared as shared
|
||||
from modules.logging_colors import logger
|
||||
from modules.models import reload_model
|
||||
|
||||
try:
|
||||
from auto_gptq import get_gptq_peft_model
|
||||
from auto_gptq.utils.peft_utils import GPTQLoraConfig
|
||||
has_auto_gptq_peft = True
|
||||
except:
|
||||
has_auto_gptq_peft = False
|
||||
|
||||
|
||||
def add_lora_to_model(lora_names):
|
||||
if 'GPTQForCausalLM' in shared.model.__class__.__name__:
|
||||
add_lora_autogptq(lora_names)
|
||||
elif shared.model.__class__.__name__ == 'ExllamaModel':
|
||||
add_lora_exllama(lora_names)
|
||||
else:
|
||||
add_lora_transformers(lora_names)
|
||||
|
||||
|
||||
def add_lora_exllama(lora_names):
|
||||
|
||||
try:
|
||||
from repositories.exllama.lora import ExLlamaLora
|
||||
except:
|
||||
logger.error("Could not find the file repositories/exllama/lora.py. Make sure that exllama is cloned inside repositories/ and is up to date.")
|
||||
return
|
||||
|
||||
if len(lora_names) == 0:
|
||||
shared.model.generator.lora = None
|
||||
shared.lora_names = []
|
||||
return
|
||||
else:
|
||||
if len(lora_names) > 1:
|
||||
logger.warning('ExLlama can only work with 1 LoRA at the moment. Only the first one in the list will be loaded.')
|
||||
|
||||
lora_path = Path(f"{shared.args.lora_dir}/{lora_names[0]}")
|
||||
lora_config_path = lora_path / "adapter_config.json"
|
||||
lora_adapter_path = lora_path / "adapter_model.bin"
|
||||
|
||||
logger.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join([lora_names[0]])))
|
||||
lora = ExLlamaLora(shared.model.model, str(lora_config_path), str(lora_adapter_path))
|
||||
shared.model.generator.lora = lora
|
||||
shared.lora_names = [lora_names[0]]
|
||||
return
|
||||
|
||||
|
||||
# Adapted from https://github.com/Ph0rk0z/text-generation-webui-testing
|
||||
def add_lora_autogptq(lora_names):
|
||||
|
||||
try:
|
||||
from auto_gptq import get_gptq_peft_model
|
||||
from auto_gptq.utils.peft_utils import GPTQLoraConfig
|
||||
except:
|
||||
logger.error("This version of AutoGPTQ does not support LoRA. You need to install from source or wait for a new release.")
|
||||
return
|
||||
|
||||
if len(lora_names) == 0:
|
||||
if len(shared.lora_names) > 0:
|
||||
reload_model()
|
||||
|
||||
shared.lora_names = []
|
||||
return
|
||||
else:
|
||||
if len(lora_names) > 1:
|
||||
logger.warning('AutoGPTQ can only work with 1 LoRA at the moment. Only the first one in the list will be loaded.')
|
||||
|
||||
peft_config = GPTQLoraConfig(
|
||||
inference_mode=True,
|
||||
)
|
||||
|
||||
lora_path = Path(f"{shared.args.lora_dir}/{lora_names[0]}")
|
||||
logger.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join([lora_names[0]])))
|
||||
shared.model = get_gptq_peft_model(shared.model, peft_config, lora_path)
|
||||
shared.lora_names = [lora_names[0]]
|
||||
return
|
||||
|
||||
|
||||
def add_lora_transformers(lora_names):
|
||||
prior_set = set(shared.lora_names)
|
||||
added_set = set(lora_names) - prior_set
|
||||
removed_set = prior_set - set(lora_names)
|
||||
shared.lora_names = list(lora_names)
|
||||
|
||||
is_autogptq = 'GPTQForCausalLM' in shared.model.__class__.__name__
|
||||
# If no LoRA needs to be added or removed, exit
|
||||
if len(added_set) == 0 and len(removed_set) == 0:
|
||||
return
|
||||
|
||||
# AutoGPTQ case. It doesn't use the peft functions.
|
||||
# Copied from https://github.com/Ph0rk0z/text-generation-webui-testing
|
||||
if is_autogptq:
|
||||
if not has_auto_gptq_peft:
|
||||
logger.error("This version of AutoGPTQ does not support LoRA. You need to install from source or wait for a new release.")
|
||||
return
|
||||
# Add a LoRA when another LoRA is already present
|
||||
if len(removed_set) == 0 and len(prior_set) > 0:
|
||||
logger.info(f"Adding the LoRA(s) named {added_set} to the model...")
|
||||
for lora in added_set:
|
||||
shared.model.load_adapter(Path(f"{shared.args.lora_dir}/{lora}"), lora)
|
||||
|
||||
if len(prior_set) > 0:
|
||||
reload_model()
|
||||
return
|
||||
|
||||
if len(shared.lora_names) == 0:
|
||||
return
|
||||
else:
|
||||
if len(shared.lora_names) > 1:
|
||||
logger.warning('AutoGPTQ can only work with 1 LoRA at the moment. Only the first one in the list will be loaded')
|
||||
# If any LoRA needs to be removed, start over
|
||||
if len(removed_set) > 0:
|
||||
shared.model.disable_adapter()
|
||||
shared.model = shared.model.base_model.model
|
||||
|
||||
peft_config = GPTQLoraConfig(
|
||||
inference_mode=True,
|
||||
)
|
||||
if len(lora_names) > 0:
|
||||
params = {}
|
||||
if not shared.args.cpu:
|
||||
params['dtype'] = shared.model.dtype
|
||||
if hasattr(shared.model, "hf_device_map"):
|
||||
params['device_map'] = {"base_model.model." + k: v for k, v in shared.model.hf_device_map.items()}
|
||||
elif shared.args.load_in_8bit:
|
||||
params['device_map'] = {'': 0}
|
||||
|
||||
lora_path = Path(f"{shared.args.lora_dir}/{shared.lora_names[0]}")
|
||||
logger.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join([lora_names[0]])))
|
||||
shared.model = get_gptq_peft_model(shared.model, peft_config, lora_path)
|
||||
return
|
||||
logger.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join(lora_names)))
|
||||
shared.model = PeftModel.from_pretrained(shared.model, Path(f"{shared.args.lora_dir}/{lora_names[0]}"), adapter_name=lora_names[0], **params)
|
||||
for lora in lora_names[1:]:
|
||||
shared.model.load_adapter(Path(f"{shared.args.lora_dir}/{lora}"), lora)
|
||||
|
||||
# Transformers case
|
||||
else:
|
||||
# If no LoRA needs to be added or removed, exit
|
||||
if len(added_set) == 0 and len(removed_set) == 0:
|
||||
return
|
||||
shared.lora_names = lora_names
|
||||
|
||||
# Add a LoRA when another LoRA is already present
|
||||
if len(removed_set) == 0 and len(prior_set) > 0:
|
||||
logger.info(f"Adding the LoRA(s) named {added_set} to the model...")
|
||||
for lora in added_set:
|
||||
shared.model.load_adapter(Path(f"{shared.args.lora_dir}/{lora}"), lora)
|
||||
|
||||
return
|
||||
|
||||
# If any LoRA needs to be removed, start over
|
||||
if len(removed_set) > 0:
|
||||
shared.model.disable_adapter()
|
||||
shared.model = shared.model.base_model.model
|
||||
|
||||
if len(lora_names) > 0:
|
||||
logger.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join(lora_names)))
|
||||
params = {}
|
||||
if not shared.args.cpu:
|
||||
params['dtype'] = shared.model.dtype
|
||||
if hasattr(shared.model, "hf_device_map"):
|
||||
params['device_map'] = {"base_model.model." + k: v for k, v in shared.model.hf_device_map.items()}
|
||||
elif shared.args.load_in_8bit:
|
||||
params['device_map'] = {'': 0}
|
||||
|
||||
shared.model = PeftModel.from_pretrained(shared.model, Path(f"{shared.args.lora_dir}/{lora_names[0]}"), adapter_name=lora_names[0], **params)
|
||||
for lora in lora_names[1:]:
|
||||
shared.model.load_adapter(Path(f"{shared.args.lora_dir}/{lora}"), lora)
|
||||
|
||||
if not shared.args.load_in_8bit and not shared.args.cpu:
|
||||
shared.model.half()
|
||||
if not hasattr(shared.model, "hf_device_map"):
|
||||
if torch.has_mps:
|
||||
device = torch.device('mps')
|
||||
shared.model = shared.model.to(device)
|
||||
else:
|
||||
shared.model = shared.model.cuda()
|
||||
if not shared.args.load_in_8bit and not shared.args.cpu:
|
||||
shared.model.half()
|
||||
if not hasattr(shared.model, "hf_device_map"):
|
||||
if torch.has_mps:
|
||||
device = torch.device('mps')
|
||||
shared.model = shared.model.to(device)
|
||||
else:
|
||||
shared.model = shared.model.cuda()
|
||||
|
@ -3,11 +3,12 @@ from pathlib import Path
|
||||
|
||||
from modules import shared
|
||||
from modules.logging_colors import logger
|
||||
from modules.relative_imports import RelativeImport
|
||||
|
||||
sys.path.insert(0, str(Path("repositories/exllama")))
|
||||
from repositories.exllama.generator import ExLlamaGenerator
|
||||
from repositories.exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig
|
||||
from repositories.exllama.tokenizer import ExLlamaTokenizer
|
||||
with RelativeImport("repositories/exllama"):
|
||||
from generator import ExLlamaGenerator
|
||||
from model import ExLlama, ExLlamaCache, ExLlamaConfig
|
||||
from tokenizer import ExLlamaTokenizer
|
||||
|
||||
|
||||
class ExllamaModel:
|
||||
|
13
modules/relative_imports.py
Normal file
13
modules/relative_imports.py
Normal file
@ -0,0 +1,13 @@
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
class RelativeImport:
|
||||
def __init__(self, path):
|
||||
self.import_path = Path(path)
|
||||
|
||||
def __enter__(self):
|
||||
sys.path.insert(0, str(self.import_path))
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
sys.path.remove(str(self.import_path))
|
Loading…
Reference in New Issue
Block a user