mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-25 17:29:22 +01:00
RWKV support prototype
This commit is contained in:
parent
021bd55886
commit
ebc64a408c
@ -38,8 +38,10 @@ def load_model(model_name):
|
|||||||
print(f"Loading {model_name}...")
|
print(f"Loading {model_name}...")
|
||||||
t0 = time.time()
|
t0 = time.time()
|
||||||
|
|
||||||
|
shared.is_RWKV = model_name.lower().startswith('rwkv-')
|
||||||
|
|
||||||
# Default settings
|
# Default settings
|
||||||
if not (shared.args.cpu or shared.args.load_in_8bit or shared.args.auto_devices or shared.args.disk or shared.args.gpu_memory is not None or shared.args.cpu_memory is not None or shared.args.deepspeed or shared.args.flexgen):
|
if not (shared.args.cpu or shared.args.load_in_8bit or shared.args.auto_devices or shared.args.disk or shared.args.gpu_memory is not None or shared.args.cpu_memory is not None or shared.args.deepspeed or shared.args.flexgen or shared.is_RWKV):
|
||||||
if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
|
if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
|
||||||
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
|
||||||
else:
|
else:
|
||||||
@ -75,6 +77,30 @@ def load_model(model_name):
|
|||||||
model.module.eval() # Inference
|
model.module.eval() # Inference
|
||||||
print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")
|
print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")
|
||||||
|
|
||||||
|
# RMKV model (not on HuggingFace)
|
||||||
|
elif shared.is_RWKV:
|
||||||
|
import types
|
||||||
|
np.set_printoptions(precision=4, suppress=True, linewidth=200)
|
||||||
|
|
||||||
|
os.environ['RWKV_JIT_ON'] = '1'
|
||||||
|
os.environ["RWKV_CUDA_ON"] = '0' # '1' : use CUDA kernel for seq mode (much faster)
|
||||||
|
|
||||||
|
from rwkv.model import RWKV
|
||||||
|
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
||||||
|
|
||||||
|
model = RWKV(model='models/RWKV-4-Pile-169M-20220807-8023.pth', strategy='cuda fp16')
|
||||||
|
|
||||||
|
out, state = model.forward([187, 510, 1563, 310, 247], None) # use 20B_tokenizer.json
|
||||||
|
print(out.detach().cpu().numpy()) # get logits
|
||||||
|
out, state = model.forward([187, 510], None)
|
||||||
|
out, state = model.forward([1563], state) # RNN has state (use deepcopy if you want to clone it)
|
||||||
|
out, state = model.forward([310, 247], state)
|
||||||
|
print(out.detach().cpu().numpy()) # same result as above
|
||||||
|
|
||||||
|
pipeline = PIPELINE(model, "20B_tokenizer.json")
|
||||||
|
|
||||||
|
return pipeline, None
|
||||||
|
|
||||||
# Custom
|
# Custom
|
||||||
else:
|
else:
|
||||||
command = "AutoModelForCausalLM.from_pretrained"
|
command = "AutoModelForCausalLM.from_pretrained"
|
||||||
|
@ -5,6 +5,7 @@ tokenizer = None
|
|||||||
model_name = ""
|
model_name = ""
|
||||||
soft_prompt_tensor = None
|
soft_prompt_tensor = None
|
||||||
soft_prompt = False
|
soft_prompt = False
|
||||||
|
is_RWKV = False
|
||||||
|
|
||||||
# Chat variables
|
# Chat variables
|
||||||
history = {'internal': [], 'visible': []}
|
history = {'internal': [], 'visible': []}
|
||||||
|
@ -6,6 +6,7 @@ import numpy as np
|
|||||||
import torch
|
import torch
|
||||||
import transformers
|
import transformers
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
||||||
|
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
from modules.extensions import apply_extensions
|
from modules.extensions import apply_extensions
|
||||||
@ -80,6 +81,19 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
|||||||
if not shared.args.cpu:
|
if not shared.args.cpu:
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
if shared.is_RWKV:
|
||||||
|
def my_print(s):
|
||||||
|
print(s, end='', flush=True)
|
||||||
|
args = PIPELINE_ARGS(temperature = temperature, top_p = top_p,
|
||||||
|
alpha_frequency = 0.25, # Frequency Penalty (as in GPT-3)
|
||||||
|
alpha_presence = 0.25, # Presence Penalty (as in GPT-3)
|
||||||
|
token_ban = [0], # ban the generation of some tokens
|
||||||
|
token_stop = []) # stop generation whenever you see any token here
|
||||||
|
reply = question + shared.model.generate(question, token_count=max_new_tokens, args=args, callback=None)
|
||||||
|
print(formatted_outputs(reply, None))
|
||||||
|
yield formatted_outputs(reply, None)
|
||||||
|
return formatted_outputs(reply, None)
|
||||||
|
|
||||||
original_question = question
|
original_question = question
|
||||||
if not (shared.args.chat or shared.args.cai_chat):
|
if not (shared.args.chat or shared.args.cai_chat):
|
||||||
question = apply_extensions(question, "input")
|
question = apply_extensions(question, "input")
|
||||||
|
Loading…
Reference in New Issue
Block a user