mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-10-29 21:50:16 +01:00
Remove GGML support
This commit is contained in:
parent
cc7b7ba153
commit
ed86878f02
@ -158,7 +158,7 @@ text-generation-webui
|
|||||||
│ │ └── tokenizer.model
|
│ │ └── tokenizer.model
|
||||||
```
|
```
|
||||||
|
|
||||||
* GGML/GGUF models are a single file and should be placed directly into `models`. Example:
|
* GGUF models are a single file and should be placed directly into `models`. Example:
|
||||||
|
|
||||||
```
|
```
|
||||||
text-generation-webui
|
text-generation-webui
|
||||||
@ -260,7 +260,7 @@ Optionally, you can use the following command-line flags:
|
|||||||
| `--quant_type QUANT_TYPE` | quant_type for 4-bit. Valid options: nf4, fp4. |
|
| `--quant_type QUANT_TYPE` | quant_type for 4-bit. Valid options: nf4, fp4. |
|
||||||
| `--use_double_quant` | use_double_quant for 4-bit. |
|
| `--use_double_quant` | use_double_quant for 4-bit. |
|
||||||
|
|
||||||
#### GGML/GGUF (for llama.cpp and ctransformers)
|
#### GGUF (for llama.cpp and ctransformers)
|
||||||
|
|
||||||
| Flag | Description |
|
| Flag | Description |
|
||||||
|-------------|-------------|
|
|-------------|-------------|
|
||||||
@ -279,8 +279,6 @@ Optionally, you can use the following command-line flags:
|
|||||||
| `--cache-capacity CACHE_CAPACITY` | Maximum cache capacity. Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed. |
|
| `--cache-capacity CACHE_CAPACITY` | Maximum cache capacity. Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed. |
|
||||||
| `--tensor_split TENSOR_SPLIT` | Split the model across multiple GPUs, comma-separated list of proportions, e.g. 18,17 |
|
| `--tensor_split TENSOR_SPLIT` | Split the model across multiple GPUs, comma-separated list of proportions, e.g. 18,17 |
|
||||||
| `--llama_cpp_seed SEED` | Seed for llama-cpp models. Default 0 (random). |
|
| `--llama_cpp_seed SEED` | Seed for llama-cpp models. Default 0 (random). |
|
||||||
| `--n_gqa N_GQA` | GGML only (not used by GGUF): Grouped-Query Attention. Must be 8 for llama-2 70b. |
|
|
||||||
| `--rms_norm_eps RMS_NORM_EPS` | GGML only (not used by GGUF): 5e-6 is a good value for llama-2 models. |
|
|
||||||
| `--cpu` | Use the CPU version of llama-cpp-python instead of the GPU-accelerated version. |
|
| `--cpu` | Use the CPU version of llama-cpp-python instead of the GPU-accelerated version. |
|
||||||
|`--cfg-cache` | llamacpp_HF: Create an additional cache for CFG negative prompts. |
|
|`--cfg-cache` | llamacpp_HF: Create an additional cache for CFG negative prompts. |
|
||||||
|
|
||||||
|
@ -9,16 +9,14 @@ llama.cpp is the best backend in two important scenarios:
|
|||||||
|
|
||||||
#### Pre-converted
|
#### Pre-converted
|
||||||
|
|
||||||
Download the GGUF or GGML models directly into your `text-generation-webui/models` folder. It will be a single file.
|
Download the GGUF models directly into your `text-generation-webui/models` folder. It will be a single file.
|
||||||
|
|
||||||
* For GGUF models, make sure its name contains `.gguf`.
|
* Make sure its name ends in `.gguf`.
|
||||||
* For GGML models, make sure its name contains `ggml` and ends in `.bin`.
|
* `q4_K_M` quantization is recommended.
|
||||||
|
|
||||||
`q4_K_M` quantization is recommended.
|
|
||||||
|
|
||||||
#### Convert Llama yourself
|
#### Convert Llama yourself
|
||||||
|
|
||||||
Follow the instructions in the llama.cpp README to generate a ggml: https://github.com/ggerganov/llama.cpp#prepare-data--run
|
Follow the instructions in the llama.cpp README to generate a GGUF: https://github.com/ggerganov/llama.cpp#prepare-data--run
|
||||||
|
|
||||||
## GPU acceleration
|
## GPU acceleration
|
||||||
|
|
||||||
|
@ -58,7 +58,6 @@ class ModelDownloader:
|
|||||||
has_pytorch = False
|
has_pytorch = False
|
||||||
has_pt = False
|
has_pt = False
|
||||||
has_gguf = False
|
has_gguf = False
|
||||||
has_ggml = False
|
|
||||||
has_safetensors = False
|
has_safetensors = False
|
||||||
is_lora = False
|
is_lora = False
|
||||||
while True:
|
while True:
|
||||||
@ -83,10 +82,9 @@ class ModelDownloader:
|
|||||||
is_safetensors = re.match(r".*\.safetensors", fname)
|
is_safetensors = re.match(r".*\.safetensors", fname)
|
||||||
is_pt = re.match(r".*\.pt", fname)
|
is_pt = re.match(r".*\.pt", fname)
|
||||||
is_gguf = re.match(r'.*\.gguf', fname)
|
is_gguf = re.match(r'.*\.gguf', fname)
|
||||||
is_ggml = re.match(r".*ggml.*\.bin", fname)
|
|
||||||
is_tokenizer = re.match(r"(tokenizer|ice|spiece).*\.model", fname)
|
is_tokenizer = re.match(r"(tokenizer|ice|spiece).*\.model", fname)
|
||||||
is_text = re.match(r".*\.(txt|json|py|md)", fname) or is_tokenizer
|
is_text = re.match(r".*\.(txt|json|py|md)", fname) or is_tokenizer
|
||||||
if any((is_pytorch, is_safetensors, is_pt, is_gguf, is_ggml, is_tokenizer, is_text)):
|
if any((is_pytorch, is_safetensors, is_pt, is_gguf, is_tokenizer, is_text)):
|
||||||
if 'lfs' in dict[i]:
|
if 'lfs' in dict[i]:
|
||||||
sha256.append([fname, dict[i]['lfs']['oid']])
|
sha256.append([fname, dict[i]['lfs']['oid']])
|
||||||
|
|
||||||
@ -109,9 +107,6 @@ class ModelDownloader:
|
|||||||
elif is_gguf:
|
elif is_gguf:
|
||||||
has_gguf = True
|
has_gguf = True
|
||||||
classifications.append('gguf')
|
classifications.append('gguf')
|
||||||
elif is_ggml:
|
|
||||||
has_ggml = True
|
|
||||||
classifications.append('ggml')
|
|
||||||
|
|
||||||
cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50'
|
cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50'
|
||||||
cursor = base64.b64encode(cursor)
|
cursor = base64.b64encode(cursor)
|
||||||
@ -123,13 +118,8 @@ class ModelDownloader:
|
|||||||
if classifications[i] in ['pytorch', 'pt']:
|
if classifications[i] in ['pytorch', 'pt']:
|
||||||
links.pop(i)
|
links.pop(i)
|
||||||
|
|
||||||
# If both GGML and GGUF are available, download GGUF only
|
is_llamacpp = has_gguf and specific_file is not None
|
||||||
if has_ggml and has_gguf:
|
return links, sha256, is_lora, is_llamacpp
|
||||||
for i in range(len(classifications) - 1, -1, -1):
|
|
||||||
if classifications[i] == 'ggml':
|
|
||||||
links.pop(i)
|
|
||||||
|
|
||||||
return links, sha256, is_lora, ((has_ggml or has_gguf) and specific_file is not None)
|
|
||||||
|
|
||||||
def get_output_folder(self, model, branch, is_lora, is_llamacpp=False, base_folder=None):
|
def get_output_folder(self, model, branch, is_lora, is_llamacpp=False, base_folder=None):
|
||||||
if base_folder is None:
|
if base_folder is None:
|
||||||
|
@ -63,7 +63,6 @@ llama-65b-gptq-3bit:
|
|||||||
.*vicuna.*(1.5|1_5):
|
.*vicuna.*(1.5|1_5):
|
||||||
instruction_template: 'Vicuna-v1.1'
|
instruction_template: 'Vicuna-v1.1'
|
||||||
truncation_length: 4096
|
truncation_length: 4096
|
||||||
rms_norm_eps: 5.0e-6
|
|
||||||
.*stable.*vicuna:
|
.*stable.*vicuna:
|
||||||
instruction_template: 'StableVicuna'
|
instruction_template: 'StableVicuna'
|
||||||
(?!.*chat).*chinese-vicuna:
|
(?!.*chat).*chinese-vicuna:
|
||||||
@ -211,24 +210,19 @@ llama-65b-gptq-3bit:
|
|||||||
instruction_template: 'Alpaca'
|
instruction_template: 'Alpaca'
|
||||||
.*llama-(2|v2):
|
.*llama-(2|v2):
|
||||||
truncation_length: 4096
|
truncation_length: 4096
|
||||||
rms_norm_eps: 5.0e-6
|
|
||||||
.*llama-(2|v2).*chat:
|
.*llama-(2|v2).*chat:
|
||||||
instruction_template: 'Llama-v2'
|
instruction_template: 'Llama-v2'
|
||||||
.*70b.*ggml.*\.bin:
|
|
||||||
n_gqa: 8
|
|
||||||
.*newhope:
|
.*newhope:
|
||||||
instruction_template: 'NewHope'
|
instruction_template: 'NewHope'
|
||||||
.*stablebeluga2:
|
.*stablebeluga2:
|
||||||
instruction_template: 'StableBeluga2'
|
instruction_template: 'StableBeluga2'
|
||||||
truncation_length: 4096
|
truncation_length: 4096
|
||||||
rms_norm_eps: 5.0e-6
|
|
||||||
.*openchat:
|
.*openchat:
|
||||||
instruction_template: 'OpenChat'
|
instruction_template: 'OpenChat'
|
||||||
.*falcon.*-instruct:
|
.*falcon.*-instruct:
|
||||||
.*(openorca-platypus2):
|
.*(openorca-platypus2):
|
||||||
instruction_template: 'OpenOrca-Platypus2'
|
instruction_template: 'OpenOrca-Platypus2'
|
||||||
custom_stopping_strings: '"### Instruction:", "### Response:"'
|
custom_stopping_strings: '"### Instruction:", "### Response:"'
|
||||||
rms_norm_eps: 5.0e-6
|
|
||||||
.*codellama:
|
.*codellama:
|
||||||
rope_freq_base: 1000000
|
rope_freq_base: 1000000
|
||||||
.*codellama.*instruct:
|
.*codellama.*instruct:
|
||||||
|
@ -9,39 +9,23 @@ from transformers.modeling_outputs import CausalLMOutputWithPast
|
|||||||
|
|
||||||
from modules import RoPE, shared
|
from modules import RoPE, shared
|
||||||
from modules.logging_colors import logger
|
from modules.logging_colors import logger
|
||||||
from modules.utils import is_gguf
|
|
||||||
|
|
||||||
import llama_cpp
|
import llama_cpp
|
||||||
|
|
||||||
try:
|
|
||||||
import llama_cpp_ggml
|
|
||||||
except:
|
|
||||||
llama_cpp_ggml = llama_cpp
|
|
||||||
|
|
||||||
if torch.cuda.is_available() and not torch.version.hip:
|
if torch.cuda.is_available() and not torch.version.hip:
|
||||||
try:
|
try:
|
||||||
import llama_cpp_cuda
|
import llama_cpp_cuda
|
||||||
except:
|
except:
|
||||||
llama_cpp_cuda = None
|
llama_cpp_cuda = None
|
||||||
try:
|
|
||||||
import llama_cpp_ggml_cuda
|
|
||||||
except:
|
|
||||||
llama_cpp_ggml_cuda = llama_cpp_cuda
|
|
||||||
else:
|
else:
|
||||||
llama_cpp_cuda = None
|
llama_cpp_cuda = None
|
||||||
llama_cpp_ggml_cuda = None
|
|
||||||
|
|
||||||
|
|
||||||
def llama_cpp_lib(model_file: Union[str, Path] = None):
|
def llama_cpp_lib():
|
||||||
if model_file is not None:
|
|
||||||
gguf_model = is_gguf(model_file)
|
|
||||||
else:
|
|
||||||
gguf_model = True
|
|
||||||
|
|
||||||
if shared.args.cpu or llama_cpp_cuda is None:
|
if shared.args.cpu or llama_cpp_cuda is None:
|
||||||
return llama_cpp if gguf_model else llama_cpp_ggml
|
return llama_cpp
|
||||||
else:
|
else:
|
||||||
return llama_cpp_cuda if gguf_model else llama_cpp_ggml_cuda
|
return llama_cpp_cuda
|
||||||
|
|
||||||
|
|
||||||
class LlamacppHF(PreTrainedModel):
|
class LlamacppHF(PreTrainedModel):
|
||||||
@ -64,7 +48,7 @@ class LlamacppHF(PreTrainedModel):
|
|||||||
'n_tokens': self.model.n_tokens,
|
'n_tokens': self.model.n_tokens,
|
||||||
'input_ids': self.model.input_ids.copy(),
|
'input_ids': self.model.input_ids.copy(),
|
||||||
'scores': self.model.scores.copy(),
|
'scores': self.model.scores.copy(),
|
||||||
'ctx': llama_cpp_lib(path).llama_new_context_with_model(model.model, model.params)
|
'ctx': llama_cpp_lib().llama_new_context_with_model(model.model, model.params)
|
||||||
}
|
}
|
||||||
|
|
||||||
def _validate_model_class(self):
|
def _validate_model_class(self):
|
||||||
@ -181,7 +165,7 @@ class LlamacppHF(PreTrainedModel):
|
|||||||
if path.is_file():
|
if path.is_file():
|
||||||
model_file = path
|
model_file = path
|
||||||
else:
|
else:
|
||||||
model_file = (list(path.glob('*.gguf*')) + list(path.glob('*ggml*.bin')))[0]
|
model_file = list(path.glob('*.gguf'))[0]
|
||||||
|
|
||||||
logger.info(f"llama.cpp weights detected: {model_file}\n")
|
logger.info(f"llama.cpp weights detected: {model_file}\n")
|
||||||
|
|
||||||
@ -207,14 +191,7 @@ class LlamacppHF(PreTrainedModel):
|
|||||||
'logits_all': True,
|
'logits_all': True,
|
||||||
}
|
}
|
||||||
|
|
||||||
if not is_gguf(model_file):
|
Llama = llama_cpp_lib().Llama
|
||||||
ggml_params = {
|
|
||||||
'n_gqa': shared.args.n_gqa or None,
|
|
||||||
'rms_norm_eps': shared.args.rms_norm_eps or None,
|
|
||||||
}
|
|
||||||
params = params | ggml_params
|
|
||||||
|
|
||||||
Llama = llama_cpp_lib(model_file).Llama
|
|
||||||
model = Llama(**params)
|
model = Llama(**params)
|
||||||
|
|
||||||
return LlamacppHF(model, model_file)
|
return LlamacppHF(model, model_file)
|
||||||
|
@ -1,7 +1,5 @@
|
|||||||
import re
|
import re
|
||||||
from functools import partial
|
from functools import partial
|
||||||
from pathlib import Path
|
|
||||||
from typing import Union
|
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
@ -9,39 +7,23 @@ from modules import RoPE, shared
|
|||||||
from modules.callbacks import Iteratorize
|
from modules.callbacks import Iteratorize
|
||||||
from modules.logging_colors import logger
|
from modules.logging_colors import logger
|
||||||
from modules.text_generation import get_max_prompt_length
|
from modules.text_generation import get_max_prompt_length
|
||||||
from modules.utils import is_gguf
|
|
||||||
|
|
||||||
import llama_cpp
|
import llama_cpp
|
||||||
|
|
||||||
try:
|
|
||||||
import llama_cpp_ggml
|
|
||||||
except:
|
|
||||||
llama_cpp_ggml = llama_cpp
|
|
||||||
|
|
||||||
if torch.cuda.is_available() and not torch.version.hip:
|
if torch.cuda.is_available() and not torch.version.hip:
|
||||||
try:
|
try:
|
||||||
import llama_cpp_cuda
|
import llama_cpp_cuda
|
||||||
except:
|
except:
|
||||||
llama_cpp_cuda = None
|
llama_cpp_cuda = None
|
||||||
try:
|
|
||||||
import llama_cpp_ggml_cuda
|
|
||||||
except:
|
|
||||||
llama_cpp_ggml_cuda = llama_cpp_cuda
|
|
||||||
else:
|
else:
|
||||||
llama_cpp_cuda = None
|
llama_cpp_cuda = None
|
||||||
llama_cpp_ggml_cuda = None
|
|
||||||
|
|
||||||
|
|
||||||
def llama_cpp_lib(model_file: Union[str, Path] = None):
|
def llama_cpp_lib():
|
||||||
if model_file is not None:
|
|
||||||
gguf_model = is_gguf(model_file)
|
|
||||||
else:
|
|
||||||
gguf_model = True
|
|
||||||
|
|
||||||
if shared.args.cpu or llama_cpp_cuda is None:
|
if shared.args.cpu or llama_cpp_cuda is None:
|
||||||
return llama_cpp if gguf_model else llama_cpp_ggml
|
return llama_cpp
|
||||||
else:
|
else:
|
||||||
return llama_cpp_cuda if gguf_model else llama_cpp_ggml_cuda
|
return llama_cpp_cuda
|
||||||
|
|
||||||
|
|
||||||
def ban_eos_logits_processor(eos_token, input_ids, logits):
|
def ban_eos_logits_processor(eos_token, input_ids, logits):
|
||||||
@ -59,8 +41,8 @@ class LlamaCppModel:
|
|||||||
@classmethod
|
@classmethod
|
||||||
def from_pretrained(self, path):
|
def from_pretrained(self, path):
|
||||||
|
|
||||||
Llama = llama_cpp_lib(path).Llama
|
Llama = llama_cpp_lib().Llama
|
||||||
LlamaCache = llama_cpp_lib(path).LlamaCache
|
LlamaCache = llama_cpp_lib().LlamaCache
|
||||||
|
|
||||||
result = self()
|
result = self()
|
||||||
cache_capacity = 0
|
cache_capacity = 0
|
||||||
@ -95,13 +77,6 @@ class LlamaCppModel:
|
|||||||
'rope_freq_scale': 1.0 / shared.args.compress_pos_emb,
|
'rope_freq_scale': 1.0 / shared.args.compress_pos_emb,
|
||||||
}
|
}
|
||||||
|
|
||||||
if not is_gguf(path):
|
|
||||||
ggml_params = {
|
|
||||||
'n_gqa': shared.args.n_gqa or None,
|
|
||||||
'rms_norm_eps': shared.args.rms_norm_eps or None,
|
|
||||||
}
|
|
||||||
params = params | ggml_params
|
|
||||||
|
|
||||||
result.model = Llama(**params)
|
result.model = Llama(**params)
|
||||||
if cache_capacity > 0:
|
if cache_capacity > 0:
|
||||||
result.model.set_cache(LlamaCache(capacity_bytes=cache_capacity))
|
result.model.set_cache(LlamaCache(capacity_bytes=cache_capacity))
|
||||||
|
@ -68,8 +68,6 @@ loaders_and_params = OrderedDict({
|
|||||||
],
|
],
|
||||||
'llama.cpp': [
|
'llama.cpp': [
|
||||||
'n_ctx',
|
'n_ctx',
|
||||||
'n_gqa',
|
|
||||||
'rms_norm_eps',
|
|
||||||
'n_gpu_layers',
|
'n_gpu_layers',
|
||||||
'tensor_split',
|
'tensor_split',
|
||||||
'n_batch',
|
'n_batch',
|
||||||
@ -86,8 +84,6 @@ loaders_and_params = OrderedDict({
|
|||||||
],
|
],
|
||||||
'llamacpp_HF': [
|
'llamacpp_HF': [
|
||||||
'n_ctx',
|
'n_ctx',
|
||||||
'n_gqa',
|
|
||||||
'rms_norm_eps',
|
|
||||||
'n_gpu_layers',
|
'n_gpu_layers',
|
||||||
'tensor_split',
|
'tensor_split',
|
||||||
'n_batch',
|
'n_batch',
|
||||||
|
@ -241,7 +241,7 @@ def llamacpp_loader(model_name):
|
|||||||
if path.is_file():
|
if path.is_file():
|
||||||
model_file = path
|
model_file = path
|
||||||
else:
|
else:
|
||||||
model_file = (list(Path(f'{shared.args.model_dir}/{model_name}').glob('*.gguf*')) + list(Path(f'{shared.args.model_dir}/{model_name}').glob('*ggml*.bin')))[0]
|
model_file = list(Path(f'{shared.args.model_dir}/{model_name}').glob('*.gguf'))[0]
|
||||||
|
|
||||||
logger.info(f"llama.cpp weights detected: {model_file}")
|
logger.info(f"llama.cpp weights detected: {model_file}")
|
||||||
model, tokenizer = LlamaCppModel.from_pretrained(model_file)
|
model, tokenizer = LlamaCppModel.from_pretrained(model_file)
|
||||||
|
@ -24,9 +24,9 @@ def infer_loader(model_name):
|
|||||||
loader = None
|
loader = None
|
||||||
elif Path(f'{shared.args.model_dir}/{model_name}/quantize_config.json').exists() or ('wbits' in model_settings and type(model_settings['wbits']) is int and model_settings['wbits'] > 0):
|
elif Path(f'{shared.args.model_dir}/{model_name}/quantize_config.json').exists() or ('wbits' in model_settings and type(model_settings['wbits']) is int and model_settings['wbits'] > 0):
|
||||||
loader = 'AutoGPTQ'
|
loader = 'AutoGPTQ'
|
||||||
elif len(list(path_to_model.glob('*.gguf*')) + list(path_to_model.glob('*ggml*.bin'))) > 0:
|
elif len(list(path_to_model.glob('*.gguf'))) > 0:
|
||||||
loader = 'llama.cpp'
|
loader = 'llama.cpp'
|
||||||
elif re.match(r'.*\.gguf|.*ggml.*\.bin', model_name.lower()):
|
elif re.match(r'.*\.gguf', model_name.lower()):
|
||||||
loader = 'llama.cpp'
|
loader = 'llama.cpp'
|
||||||
elif re.match(r'.*rwkv.*\.pth', model_name.lower()):
|
elif re.match(r'.*rwkv.*\.pth', model_name.lower()):
|
||||||
loader = 'RWKV'
|
loader = 'RWKV'
|
||||||
|
@ -126,8 +126,6 @@ parser.add_argument('--n-gpu-layers', type=int, default=0, help='Number of layer
|
|||||||
parser.add_argument('--tensor_split', type=str, default=None, help="Split the model across multiple GPUs, comma-separated list of proportions, e.g. 18,17")
|
parser.add_argument('--tensor_split', type=str, default=None, help="Split the model across multiple GPUs, comma-separated list of proportions, e.g. 18,17")
|
||||||
parser.add_argument('--n_ctx', type=int, default=2048, help='Size of the prompt context.')
|
parser.add_argument('--n_ctx', type=int, default=2048, help='Size of the prompt context.')
|
||||||
parser.add_argument('--llama_cpp_seed', type=int, default=0, help='Seed for llama-cpp models. Default 0 (random)')
|
parser.add_argument('--llama_cpp_seed', type=int, default=0, help='Seed for llama-cpp models. Default 0 (random)')
|
||||||
parser.add_argument('--n_gqa', type=int, default=0, help='grouped-query attention. Must be 8 for llama-2 70b.')
|
|
||||||
parser.add_argument('--rms_norm_eps', type=float, default=0, help='5e-6 is a good value for llama-2 models.')
|
|
||||||
|
|
||||||
# GPTQ
|
# GPTQ
|
||||||
parser.add_argument('--wbits', type=int, default=0, help='Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported.')
|
parser.add_argument('--wbits', type=int, default=0, help='Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported.')
|
||||||
|
@ -73,8 +73,6 @@ def list_model_elements():
|
|||||||
'n_gpu_layers',
|
'n_gpu_layers',
|
||||||
'tensor_split',
|
'tensor_split',
|
||||||
'n_ctx',
|
'n_ctx',
|
||||||
'n_gqa',
|
|
||||||
'rms_norm_eps',
|
|
||||||
'llama_cpp_seed',
|
'llama_cpp_seed',
|
||||||
'gpu_split',
|
'gpu_split',
|
||||||
'max_seq_len',
|
'max_seq_len',
|
||||||
|
@ -82,8 +82,6 @@ def create_ui():
|
|||||||
shared.gradio['n_ctx'] = gr.Slider(minimum=0, maximum=16384, step=256, label="n_ctx", value=shared.args.n_ctx)
|
shared.gradio['n_ctx'] = gr.Slider(minimum=0, maximum=16384, step=256, label="n_ctx", value=shared.args.n_ctx)
|
||||||
shared.gradio['threads'] = gr.Slider(label="threads", minimum=0, step=1, maximum=32, value=shared.args.threads)
|
shared.gradio['threads'] = gr.Slider(label="threads", minimum=0, step=1, maximum=32, value=shared.args.threads)
|
||||||
shared.gradio['n_batch'] = gr.Slider(label="n_batch", minimum=1, maximum=2048, value=shared.args.n_batch)
|
shared.gradio['n_batch'] = gr.Slider(label="n_batch", minimum=1, maximum=2048, value=shared.args.n_batch)
|
||||||
shared.gradio['n_gqa'] = gr.Slider(minimum=0, maximum=16, step=1, label="n_gqa", value=shared.args.n_gqa, info='GGML only (not used by GGUF): Grouped-Query Attention. Must be 8 for llama-2 70b.')
|
|
||||||
shared.gradio['rms_norm_eps'] = gr.Slider(minimum=0, maximum=1e-5, step=1e-6, label="rms_norm_eps", value=shared.args.rms_norm_eps, info='GGML only (not used by GGUF): 5e-6 is a good value for llama-2 models.')
|
|
||||||
|
|
||||||
shared.gradio['wbits'] = gr.Dropdown(label="wbits", choices=["None", 1, 2, 3, 4, 8], value=str(shared.args.wbits) if shared.args.wbits > 0 else "None")
|
shared.gradio['wbits'] = gr.Dropdown(label="wbits", choices=["None", 1, 2, 3, 4, 8], value=str(shared.args.wbits) if shared.args.wbits > 0 else "None")
|
||||||
shared.gradio['groupsize'] = gr.Dropdown(label="groupsize", choices=["None", 32, 64, 128, 1024], value=str(shared.args.groupsize) if shared.args.groupsize > 0 else "None")
|
shared.gradio['groupsize'] = gr.Dropdown(label="groupsize", choices=["None", 32, 64, 128, 1024], value=str(shared.args.groupsize) if shared.args.groupsize > 0 else "None")
|
||||||
@ -128,7 +126,7 @@ def create_ui():
|
|||||||
shared.gradio['autoload_model'] = gr.Checkbox(value=shared.settings['autoload_model'], label='Autoload the model', info='Whether to load the model as soon as it is selected in the Model dropdown.')
|
shared.gradio['autoload_model'] = gr.Checkbox(value=shared.settings['autoload_model'], label='Autoload the model', info='Whether to load the model as soon as it is selected in the Model dropdown.')
|
||||||
|
|
||||||
shared.gradio['custom_model_menu'] = gr.Textbox(label="Download model or LoRA", info="Enter the Hugging Face username/model path, for instance: facebook/galactica-125m. To specify a branch, add it at the end after a \":\" character like this: facebook/galactica-125m:main. To download a single file, enter its name in the second box.")
|
shared.gradio['custom_model_menu'] = gr.Textbox(label="Download model or LoRA", info="Enter the Hugging Face username/model path, for instance: facebook/galactica-125m. To specify a branch, add it at the end after a \":\" character like this: facebook/galactica-125m:main. To download a single file, enter its name in the second box.")
|
||||||
shared.gradio['download_specific_file'] = gr.Textbox(placeholder="File name (for GGUF/GGML)", show_label=False, max_lines=1)
|
shared.gradio['download_specific_file'] = gr.Textbox(placeholder="File name (for GGUF models)", show_label=False, max_lines=1)
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
shared.gradio['download_model_button'] = gr.Button("Download", variant='primary')
|
shared.gradio['download_model_button'] = gr.Button("Download", variant='primary')
|
||||||
shared.gradio['get_file_list'] = gr.Button("Get file list")
|
shared.gradio['get_file_list'] = gr.Button("Get file list")
|
||||||
|
@ -2,7 +2,6 @@ import os
|
|||||||
import re
|
import re
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Union
|
|
||||||
|
|
||||||
from modules import shared
|
from modules import shared
|
||||||
from modules.logging_colors import logger
|
from modules.logging_colors import logger
|
||||||
@ -125,15 +124,3 @@ def get_datasets(path: str, ext: str):
|
|||||||
|
|
||||||
def get_available_chat_styles():
|
def get_available_chat_styles():
|
||||||
return sorted(set(('-'.join(k.stem.split('-')[1:]) for k in Path('css').glob('chat_style*.css'))), key=natural_keys)
|
return sorted(set(('-'.join(k.stem.split('-')[1:]) for k in Path('css').glob('chat_style*.css'))), key=natural_keys)
|
||||||
|
|
||||||
|
|
||||||
def is_gguf(path: Union[str, Path]) -> bool:
|
|
||||||
'''
|
|
||||||
Determines if a llama.cpp model is in GGUF format
|
|
||||||
Copied from ctransformers utils.py
|
|
||||||
'''
|
|
||||||
path = str(Path(path).resolve())
|
|
||||||
with open(path, "rb") as f:
|
|
||||||
magic = f.read(4)
|
|
||||||
|
|
||||||
return magic == "GGUF".encode()
|
|
||||||
|
@ -44,12 +44,6 @@ https://github.com/abetlen/llama-cpp-python/releases/download/v0.1.84/llama_cpp_
|
|||||||
https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.1.84+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows"
|
https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.1.84+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows"
|
||||||
https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.1.84+cu117-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_cuda-0.1.84+cu117-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||||
|
|
||||||
# llama-cpp-python with GGML support
|
|
||||||
https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python_ggml-0.1.78+cpuavx2-cp310-cp310-win_amd64.whl; platform_system == "Windows"
|
|
||||||
https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/cpu/llama_cpp_python_ggml-0.1.78+cpuavx2-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
|
||||||
https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_ggml_cuda-0.1.78+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows"
|
|
||||||
https://github.com/jllllll/llama-cpp-python-cuBLAS-wheels/releases/download/textgen-webui/llama_cpp_python_ggml_cuda-0.1.78+cu117-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
|
||||||
|
|
||||||
# GPTQ-for-LLaMa
|
# GPTQ-for-LLaMa
|
||||||
https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.0/gptq_for_llama-0.1.0+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows"
|
https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.0/gptq_for_llama-0.1.0+cu117-cp310-cp310-win_amd64.whl; platform_system == "Windows"
|
||||||
https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.0/gptq_for_llama-0.1.0+cu117-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases/download/0.1.0/gptq_for_llama-0.1.0+cu117-cp310-cp310-linux_x86_64.whl; platform_system == "Linux" and platform_machine == "x86_64"
|
||||||
|
@ -177,8 +177,6 @@ if __name__ == "__main__":
|
|||||||
'skip_special_tokens': shared.settings['skip_special_tokens'],
|
'skip_special_tokens': shared.settings['skip_special_tokens'],
|
||||||
'custom_stopping_strings': shared.settings['custom_stopping_strings'],
|
'custom_stopping_strings': shared.settings['custom_stopping_strings'],
|
||||||
'truncation_length': shared.settings['truncation_length'],
|
'truncation_length': shared.settings['truncation_length'],
|
||||||
'n_gqa': 0,
|
|
||||||
'rms_norm_eps': 0,
|
|
||||||
'rope_freq_base': 0,
|
'rope_freq_base': 0,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user