Use AutoGPTQ by default for GPTQ models

This commit is contained in:
oobabooga 2023-06-05 15:41:48 -03:00
parent 632571a009
commit f276d88546
5 changed files with 19 additions and 21 deletions

View File

@ -244,10 +244,18 @@ Optionally, you can use the following command-line flags:
| `--n_ctx N_CTX` | Size of the prompt context. | | `--n_ctx N_CTX` | Size of the prompt context. |
| `--llama_cpp_seed SEED` | Seed for llama-cpp models. Default 0 (random). | | `--llama_cpp_seed SEED` | Seed for llama-cpp models. Default 0 (random). |
#### GPTQ #### AutoGPTQ
| Flag | Description |
|------------------|-------------|
| `--triton` | Use triton. |
| `--desc_act` | For models that don't have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig. |
#### GPTQ-for-LLaMa
| Flag | Description | | Flag | Description |
|---------------------------|-------------| |---------------------------|-------------|
| `--gptq-for-llama` | Use GPTQ-for-LLaMa to load the GPTQ model instead of AutoGPTQ. |
| `--wbits WBITS` | Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported. | | `--wbits WBITS` | Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported. |
| `--model_type MODEL_TYPE` | Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported. | | `--model_type MODEL_TYPE` | Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported. |
| `--groupsize GROUPSIZE` | Group size. | | `--groupsize GROUPSIZE` | Group size. |
@ -258,14 +266,6 @@ Optionally, you can use the following command-line flags:
| `--warmup_autotune` | (triton) Enable warmup autotune. | | `--warmup_autotune` | (triton) Enable warmup autotune. |
| `--fused_mlp` | (triton) Enable fused mlp. | | `--fused_mlp` | (triton) Enable fused mlp. |
#### AutoGPTQ
| Flag | Description |
|------------------|-------------|
| `--autogptq` | Use AutoGPTQ for loading quantized models instead of the internal GPTQ loader. |
| `--triton` | Use triton. |
|` --desc_act` | For models that don't have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig. |
#### FlexGen #### FlexGen
| Flag | Description | | Flag | Description |

View File

@ -81,10 +81,10 @@ def load_model(model_name):
logger.error('The path to the model does not exist. Exiting.') logger.error('The path to the model does not exist. Exiting.')
return None, None return None, None
if shared.args.autogptq: if shared.args.gptq_for_llama:
load_func = AutoGPTQ_loader
elif shared.args.wbits > 0:
load_func = GPTQ_loader load_func = GPTQ_loader
elif Path(f'{shared.args.model_dir}/{model_name}/quantize_config.json').exists() or shared.args.wbits > 0:
load_func = AutoGPTQ_loader
elif shared.model_type == 'llamacpp': elif shared.model_type == 'llamacpp':
load_func = llamacpp_loader load_func = llamacpp_loader
elif shared.model_type == 'rwkv': elif shared.model_type == 'rwkv':

View File

@ -141,7 +141,8 @@ parser.add_argument('--warmup_autotune', action='store_true', help='(triton) Ena
parser.add_argument('--fused_mlp', action='store_true', help='(triton) Enable fused mlp.') parser.add_argument('--fused_mlp', action='store_true', help='(triton) Enable fused mlp.')
# AutoGPTQ # AutoGPTQ
parser.add_argument('--autogptq', action='store_true', help='Use AutoGPTQ for loading quantized models instead of the internal GPTQ loader.') parser.add_argument('--gptq-for-llama', action='store_true', help='Use GPTQ-for-LLaMa to load the GPTQ model instead of AutoGPTQ.')
parser.add_argument('--autogptq', action='store_true', help='DEPRECATED')
parser.add_argument('--triton', action='store_true', help='Use triton.') parser.add_argument('--triton', action='store_true', help='Use triton.')
parser.add_argument('--desc_act', action='store_true', help='For models that don\'t have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig.') parser.add_argument('--desc_act', action='store_true', help='For models that don\'t have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig.')
@ -181,12 +182,9 @@ parser.add_argument('--multimodal-pipeline', type=str, default=None, help='The m
args = parser.parse_args() args = parser.parse_args()
args_defaults = parser.parse_args([]) args_defaults = parser.parse_args([])
# Deprecation warnings for parameters that have been renamed # Deprecation warnings
deprecated_dict = {} if args.autogptq:
for k in deprecated_dict: logger.warning('--autogptq has been deprecated and will be removed soon. AutoGPTQ is now used by default for GPTQ models.')
if getattr(args, k) != deprecated_dict[k][1]:
logger.warning(f"--{k} is deprecated and will be removed. Use --{deprecated_dict[k][0]} instead.")
setattr(args, deprecated_dict[k][0], getattr(args, k))
# Security warnings # Security warnings
if args.trust_remote_code: if args.trust_remote_code:

View File

@ -30,7 +30,7 @@ theme = gr.themes.Default(
def list_model_elements(): def list_model_elements():
elements = ['cpu_memory', 'auto_devices', 'disk', 'cpu', 'bf16', 'load_in_8bit', 'trust_remote_code', 'load_in_4bit', 'compute_dtype', 'quant_type', 'use_double_quant', 'wbits', 'groupsize', 'model_type', 'pre_layer', 'autogptq', 'triton', 'desc_act', 'threads', 'n_batch', 'no_mmap', 'mlock', 'n_gpu_layers', 'n_ctx', 'llama_cpp_seed'] elements = ['cpu_memory', 'auto_devices', 'disk', 'cpu', 'bf16', 'load_in_8bit', 'trust_remote_code', 'load_in_4bit', 'compute_dtype', 'quant_type', 'use_double_quant', 'gptq_for_llama', 'wbits', 'groupsize', 'model_type', 'pre_layer', 'triton', 'desc_act', 'threads', 'n_batch', 'no_mmap', 'mlock', 'n_gpu_layers', 'n_ctx', 'llama_cpp_seed']
for i in range(torch.cuda.device_count()): for i in range(torch.cuda.device_count()):
elements.append(f'gpu_memory_{i}') elements.append(f'gpu_memory_{i}')

View File

@ -393,12 +393,12 @@ def create_model_menus():
with gr.Row(): with gr.Row():
with gr.Column(): with gr.Column():
gr.Markdown('AutoGPTQ') gr.Markdown('AutoGPTQ')
shared.gradio['autogptq'] = gr.Checkbox(label="autogptq", value=shared.args.autogptq, info='Activate AutoGPTQ loader. gpu-memory should be used for CPU offloading instead of pre_layer.')
shared.gradio['triton'] = gr.Checkbox(label="triton", value=shared.args.triton) shared.gradio['triton'] = gr.Checkbox(label="triton", value=shared.args.triton)
shared.gradio['desc_act'] = gr.Checkbox(label="desc_act", value=shared.args.desc_act, info='\'desc_act\', \'wbits\', and \'groupsize\' are used for old models without a quantize_config.json.') shared.gradio['desc_act'] = gr.Checkbox(label="desc_act", value=shared.args.desc_act, info='\'desc_act\', \'wbits\', and \'groupsize\' are used for old models without a quantize_config.json.')
with gr.Column(): with gr.Column():
gr.Markdown('GPTQ-for-LLaMa') gr.Markdown('GPTQ-for-LLaMa')
shared.gradio['gptq_for_llama'] = gr.Checkbox(label="gptq-for-llama", value=shared.args.gptq_for_llama, info='Use GPTQ-for-LLaMa to load the GPTQ model instead of AutoGPTQ. pre_layer should be used for CPU offloading instead of gpu-memory.')
with gr.Row(): with gr.Row():
shared.gradio['wbits'] = gr.Dropdown(label="wbits", choices=["None", 1, 2, 3, 4, 8], value=shared.args.wbits if shared.args.wbits > 0 else "None") shared.gradio['wbits'] = gr.Dropdown(label="wbits", choices=["None", 1, 2, 3, 4, 8], value=shared.args.wbits if shared.args.wbits > 0 else "None")
shared.gradio['groupsize'] = gr.Dropdown(label="groupsize", choices=["None", 32, 64, 128, 1024], value=shared.args.groupsize if shared.args.groupsize > 0 else "None") shared.gradio['groupsize'] = gr.Dropdown(label="groupsize", choices=["None", 32, 64, 128, 1024], value=shared.args.groupsize if shared.args.groupsize > 0 else "None")