From f2bf1a2c9e0074ea7cb98e6d9176940998ba0559 Mon Sep 17 00:00:00 2001 From: oobabooga <112222186+oobabooga@users.noreply.github.com> Date: Thu, 13 Apr 2023 11:17:32 -0300 Subject: [PATCH] Add some comments, remove obsolete code --- modules/GPTQ_loader.py | 26 ++++++-------------------- 1 file changed, 6 insertions(+), 20 deletions(-) diff --git a/modules/GPTQ_loader.py b/modules/GPTQ_loader.py index 5ef6003e..fc1689b8 100644 --- a/modules/GPTQ_loader.py +++ b/modules/GPTQ_loader.py @@ -78,8 +78,9 @@ def _load_quant(model, checkpoint, wbits, groupsize=-1, faster_kernel=False, exc def load_quantized(model_name): + + # Find the model type if not shared.args.model_type: - # Try to determine model type from model name name = model_name.lower() if any((k in name for k in ['llama', 'alpaca', 'vicuna'])): model_type = 'llama' @@ -94,6 +95,7 @@ def load_quantized(model_name): else: model_type = shared.args.model_type.lower() + # Select the appropriate load_quant function if shared.args.pre_layer and model_type == 'llama': load_quant = llama_inference_offload.load_quant elif model_type in ('llama', 'opt', 'gptj'): @@ -104,7 +106,7 @@ def load_quantized(model_name): print("Unknown pre-quantized model type specified. Only 'llama', 'opt' and 'gptj' are supported") exit() - # Now we are going to try to locate the quantized model file. I think it's cleaner and supports the new name containing groupsize + # Locate the quantized model file path_to_model = Path(f'{shared.args.model_dir}/{model_name}') pt_path = None priority_name_list = [ @@ -118,7 +120,8 @@ def load_quantized(model_name): pt_path = path break - # For compatibility, do we really need this? + # If the model hasn't been found with a well-behaved name, pick the last .pt + # or the last .safetensors found in its folder as a last resort if not pt_path: path_to_model = Path(f'{shared.args.model_dir}/{model_name}') found_pts = list(path_to_model.glob("*.pt")) @@ -129,23 +132,6 @@ def load_quantized(model_name): pt_path = found_pts[-1] elif len(found_safetensors) > 0: pt_path = found_safetensors[-1] - else: - if path_to_model.name.lower().startswith('llama-7b'): - pt_model = f'llama-7b-{shared.args.wbits}bit' - elif path_to_model.name.lower().startswith('llama-13b'): - pt_model = f'llama-13b-{shared.args.wbits}bit' - elif path_to_model.name.lower().startswith('llama-30b'): - pt_model = f'llama-30b-{shared.args.wbits}bit' - elif path_to_model.name.lower().startswith('llama-65b'): - pt_model = f'llama-65b-{shared.args.wbits}bit' - else: - pt_model = f'{model_name}-{shared.args.wbits}bit' - - # Try to find the .safetensors or .pt both in the model dir and in the subfolder - for path in [Path(p + ext) for ext in ['.safetensors', '.pt'] for p in [f"{shared.args.model_dir}/{pt_model}", f"{path_to_model}/{pt_model}"]]: - if path.exists(): - pt_path = path - break if not pt_path: print("Could not find the quantized model in .pt or .safetensors format, exiting...")