Merge pull request #224 from ItsLogic/llama-bits

Allow users to load 2, 3 and 4 bit llama models
This commit is contained in:
oobabooga 2023-03-12 11:23:50 -03:00 committed by GitHub
commit f3b00dd165
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 67 additions and 46 deletions

View File

@ -138,7 +138,8 @@ Optionally, you can use the following command-line flags:
| `--cai-chat` | Launch the web UI in chat mode with a style similar to Character.AI's. If the file `img_bot.png` or `img_bot.jpg` exists in the same folder as server.py, this image will be used as the bot's profile picture. Similarly, `img_me.png` or `img_me.jpg` will be used as your profile picture. | | `--cai-chat` | Launch the web UI in chat mode with a style similar to Character.AI's. If the file `img_bot.png` or `img_bot.jpg` exists in the same folder as server.py, this image will be used as the bot's profile picture. Similarly, `img_me.png` or `img_me.jpg` will be used as your profile picture. |
| `--cpu` | Use the CPU to generate text.| | `--cpu` | Use the CPU to generate text.|
| `--load-in-8bit` | Load the model with 8-bit precision.| | `--load-in-8bit` | Load the model with 8-bit precision.|
| `--load-in-4bit` | Load the model with 4-bit precision. Currently only works with LLaMA. | | `--load-in-4bit` | Load the model with 4-bit precision. Currently only works with LLaMA.|
| `--gptq-bits` | Load a pre-quantized model with specified precision. 2, 3, 4 and 8bit are supported. Currently only works with LLaMA. |
| `--bf16` | Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. | | `--bf16` | Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. |
| `--auto-devices` | Automatically split the model across the available GPU(s) and CPU.| | `--auto-devices` | Automatically split the model across the available GPU(s) and CPU.|
| `--disk` | If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk. | | `--disk` | If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk. |

View File

@ -42,7 +42,7 @@ def load_model(model_name):
shared.is_RWKV = model_name.lower().startswith('rwkv-') shared.is_RWKV = model_name.lower().startswith('rwkv-')
# Default settings # Default settings
if not (shared.args.cpu or shared.args.load_in_8bit or shared.args.load_in_4bit or shared.args.auto_devices or shared.args.disk or shared.args.gpu_memory is not None or shared.args.cpu_memory is not None or shared.args.deepspeed or shared.args.flexgen or shared.is_RWKV): if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.load_in_4bit, shared.args.gptq_bits > 0, shared.args.auto_devices, shared.args.disk, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.deepspeed, shared.args.flexgen, shared.is_RWKV]):
if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')): if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True) model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
else: else:
@ -88,51 +88,10 @@ def load_model(model_name):
return model, tokenizer return model, tokenizer
# 4-bit LLaMA # 4-bit LLaMA
elif shared.args.load_in_4bit: elif shared.args.gptq_bits > 0 or shared.args.load_in_4bit:
sys.path.insert(0, os.path.abspath(Path("repositories/GPTQ-for-LLaMa"))) from modules.quantized_LLaMA import load_quantized_LLaMA
from llama import load_quant model = load_quantized_LLaMA(model_name)
path_to_model = Path(f'models/{model_name}')
pt_model = ''
if path_to_model.name.lower().startswith('llama-7b'):
pt_model = 'llama-7b-4bit.pt'
elif path_to_model.name.lower().startswith('llama-13b'):
pt_model = 'llama-13b-4bit.pt'
elif path_to_model.name.lower().startswith('llama-30b'):
pt_model = 'llama-30b-4bit.pt'
elif path_to_model.name.lower().startswith('llama-65b'):
pt_model = 'llama-65b-4bit.pt'
else:
pt_model = f'{model_name}-4bit.pt'
# Try to find the .pt both in models/ and in the subfolder
pt_path = None
for path in [Path(p) for p in [f"models/{pt_model}", f"{path_to_model}/{pt_model}"]]:
if path.exists():
pt_path = path
if not pt_path:
print(f"Could not find {pt_model}, exiting...")
exit()
model = load_quant(path_to_model, Path(f"models/{pt_model}"), 4)
# Multi-GPU setup
if shared.args.gpu_memory:
import accelerate
max_memory = {}
for i in range(len(shared.args.gpu_memory)):
max_memory[i] = f"{shared.args.gpu_memory[i]}GiB"
max_memory['cpu'] = f"{shared.args.cpu_memory or '99'}GiB"
device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LLaMADecoderLayer"])
model = accelerate.dispatch_model(model, device_map=device_map)
# Single GPU
else:
model = model.to(torch.device('cuda:0'))
# Custom # Custom
else: else:

View File

@ -0,0 +1,60 @@
import os
import sys
from pathlib import Path
import accelerate
import torch
import modules.shared as shared
sys.path.insert(0, os.path.abspath(Path("repositories/GPTQ-for-LLaMa")))
from llama import load_quant
# 4-bit LLaMA
def load_quantized_LLaMA(model_name):
if shared.args.load_in_4bit:
bits = 4
else:
bits = shared.args.gptq_bits
path_to_model = Path(f'models/{model_name}')
pt_model = ''
if path_to_model.name.lower().startswith('llama-7b'):
pt_model = f'llama-7b-{bits}bit.pt'
elif path_to_model.name.lower().startswith('llama-13b'):
pt_model = f'llama-13b-{bits}bit.pt'
elif path_to_model.name.lower().startswith('llama-30b'):
pt_model = f'llama-30b-{bits}bit.pt'
elif path_to_model.name.lower().startswith('llama-65b'):
pt_model = f'llama-65b-{bits}bit.pt'
else:
pt_model = f'{model_name}-{bits}bit.pt'
# Try to find the .pt both in models/ and in the subfolder
pt_path = None
for path in [Path(p) for p in [f"models/{pt_model}", f"{path_to_model}/{pt_model}"]]:
if path.exists():
pt_path = path
if not pt_path:
print(f"Could not find {pt_model}, exiting...")
exit()
model = load_quant(path_to_model, pt_path, bits)
# Multi-GPU setup
if shared.args.gpu_memory:
max_memory = {}
for i in range(len(shared.args.gpu_memory)):
max_memory[i] = f"{shared.args.gpu_memory[i]}GiB"
max_memory['cpu'] = f"{shared.args.cpu_memory or '99'}GiB"
device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LLaMADecoderLayer"])
model = accelerate.dispatch_model(model, device_map=device_map)
# Single GPU
else:
model = model.to(torch.device('cuda:0'))
return model

View File

@ -69,6 +69,7 @@ parser.add_argument('--cai-chat', action='store_true', help='Launch the web UI i
parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text.') parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text.')
parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision.') parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision.')
parser.add_argument('--load-in-4bit', action='store_true', help='Load the model with 4-bit precision. Currently only works with LLaMA.') parser.add_argument('--load-in-4bit', action='store_true', help='Load the model with 4-bit precision. Currently only works with LLaMA.')
parser.add_argument('--gptq-bits', type=int, default=0, help='Load a pre-quantized model with specified precision. 2, 3, 4 and 8bit are supported. Currently only works with LLaMA.')
parser.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.') parser.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.')
parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.') parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.')
parser.add_argument('--disk', action='store_true', help='If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk.') parser.add_argument('--disk', action='store_true', help='If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk.')