mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-22 08:07:56 +01:00
Merge pull request #224 from ItsLogic/llama-bits
Allow users to load 2, 3 and 4 bit llama models
This commit is contained in:
commit
f3b00dd165
@ -138,7 +138,8 @@ Optionally, you can use the following command-line flags:
|
||||
| `--cai-chat` | Launch the web UI in chat mode with a style similar to Character.AI's. If the file `img_bot.png` or `img_bot.jpg` exists in the same folder as server.py, this image will be used as the bot's profile picture. Similarly, `img_me.png` or `img_me.jpg` will be used as your profile picture. |
|
||||
| `--cpu` | Use the CPU to generate text.|
|
||||
| `--load-in-8bit` | Load the model with 8-bit precision.|
|
||||
| `--load-in-4bit` | Load the model with 4-bit precision. Currently only works with LLaMA. |
|
||||
| `--load-in-4bit` | Load the model with 4-bit precision. Currently only works with LLaMA.|
|
||||
| `--gptq-bits` | Load a pre-quantized model with specified precision. 2, 3, 4 and 8bit are supported. Currently only works with LLaMA. |
|
||||
| `--bf16` | Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. |
|
||||
| `--auto-devices` | Automatically split the model across the available GPU(s) and CPU.|
|
||||
| `--disk` | If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk. |
|
||||
|
@ -42,7 +42,7 @@ def load_model(model_name):
|
||||
shared.is_RWKV = model_name.lower().startswith('rwkv-')
|
||||
|
||||
# Default settings
|
||||
if not (shared.args.cpu or shared.args.load_in_8bit or shared.args.load_in_4bit or shared.args.auto_devices or shared.args.disk or shared.args.gpu_memory is not None or shared.args.cpu_memory is not None or shared.args.deepspeed or shared.args.flexgen or shared.is_RWKV):
|
||||
if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.load_in_4bit, shared.args.gptq_bits > 0, shared.args.auto_devices, shared.args.disk, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.deepspeed, shared.args.flexgen, shared.is_RWKV]):
|
||||
if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
|
||||
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
|
||||
else:
|
||||
@ -88,51 +88,10 @@ def load_model(model_name):
|
||||
return model, tokenizer
|
||||
|
||||
# 4-bit LLaMA
|
||||
elif shared.args.load_in_4bit:
|
||||
sys.path.insert(0, os.path.abspath(Path("repositories/GPTQ-for-LLaMa")))
|
||||
elif shared.args.gptq_bits > 0 or shared.args.load_in_4bit:
|
||||
from modules.quantized_LLaMA import load_quantized_LLaMA
|
||||
|
||||
from llama import load_quant
|
||||
|
||||
path_to_model = Path(f'models/{model_name}')
|
||||
pt_model = ''
|
||||
if path_to_model.name.lower().startswith('llama-7b'):
|
||||
pt_model = 'llama-7b-4bit.pt'
|
||||
elif path_to_model.name.lower().startswith('llama-13b'):
|
||||
pt_model = 'llama-13b-4bit.pt'
|
||||
elif path_to_model.name.lower().startswith('llama-30b'):
|
||||
pt_model = 'llama-30b-4bit.pt'
|
||||
elif path_to_model.name.lower().startswith('llama-65b'):
|
||||
pt_model = 'llama-65b-4bit.pt'
|
||||
else:
|
||||
pt_model = f'{model_name}-4bit.pt'
|
||||
|
||||
# Try to find the .pt both in models/ and in the subfolder
|
||||
pt_path = None
|
||||
for path in [Path(p) for p in [f"models/{pt_model}", f"{path_to_model}/{pt_model}"]]:
|
||||
if path.exists():
|
||||
pt_path = path
|
||||
|
||||
if not pt_path:
|
||||
print(f"Could not find {pt_model}, exiting...")
|
||||
exit()
|
||||
|
||||
model = load_quant(path_to_model, Path(f"models/{pt_model}"), 4)
|
||||
|
||||
# Multi-GPU setup
|
||||
if shared.args.gpu_memory:
|
||||
import accelerate
|
||||
|
||||
max_memory = {}
|
||||
for i in range(len(shared.args.gpu_memory)):
|
||||
max_memory[i] = f"{shared.args.gpu_memory[i]}GiB"
|
||||
max_memory['cpu'] = f"{shared.args.cpu_memory or '99'}GiB"
|
||||
|
||||
device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LLaMADecoderLayer"])
|
||||
model = accelerate.dispatch_model(model, device_map=device_map)
|
||||
|
||||
# Single GPU
|
||||
else:
|
||||
model = model.to(torch.device('cuda:0'))
|
||||
model = load_quantized_LLaMA(model_name)
|
||||
|
||||
# Custom
|
||||
else:
|
||||
|
60
modules/quantized_LLaMA.py
Normal file
60
modules/quantized_LLaMA.py
Normal file
@ -0,0 +1,60 @@
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import accelerate
|
||||
import torch
|
||||
|
||||
import modules.shared as shared
|
||||
|
||||
sys.path.insert(0, os.path.abspath(Path("repositories/GPTQ-for-LLaMa")))
|
||||
from llama import load_quant
|
||||
|
||||
|
||||
# 4-bit LLaMA
|
||||
def load_quantized_LLaMA(model_name):
|
||||
if shared.args.load_in_4bit:
|
||||
bits = 4
|
||||
else:
|
||||
bits = shared.args.gptq_bits
|
||||
|
||||
path_to_model = Path(f'models/{model_name}')
|
||||
pt_model = ''
|
||||
if path_to_model.name.lower().startswith('llama-7b'):
|
||||
pt_model = f'llama-7b-{bits}bit.pt'
|
||||
elif path_to_model.name.lower().startswith('llama-13b'):
|
||||
pt_model = f'llama-13b-{bits}bit.pt'
|
||||
elif path_to_model.name.lower().startswith('llama-30b'):
|
||||
pt_model = f'llama-30b-{bits}bit.pt'
|
||||
elif path_to_model.name.lower().startswith('llama-65b'):
|
||||
pt_model = f'llama-65b-{bits}bit.pt'
|
||||
else:
|
||||
pt_model = f'{model_name}-{bits}bit.pt'
|
||||
|
||||
# Try to find the .pt both in models/ and in the subfolder
|
||||
pt_path = None
|
||||
for path in [Path(p) for p in [f"models/{pt_model}", f"{path_to_model}/{pt_model}"]]:
|
||||
if path.exists():
|
||||
pt_path = path
|
||||
|
||||
if not pt_path:
|
||||
print(f"Could not find {pt_model}, exiting...")
|
||||
exit()
|
||||
|
||||
model = load_quant(path_to_model, pt_path, bits)
|
||||
|
||||
# Multi-GPU setup
|
||||
if shared.args.gpu_memory:
|
||||
max_memory = {}
|
||||
for i in range(len(shared.args.gpu_memory)):
|
||||
max_memory[i] = f"{shared.args.gpu_memory[i]}GiB"
|
||||
max_memory['cpu'] = f"{shared.args.cpu_memory or '99'}GiB"
|
||||
|
||||
device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LLaMADecoderLayer"])
|
||||
model = accelerate.dispatch_model(model, device_map=device_map)
|
||||
|
||||
# Single GPU
|
||||
else:
|
||||
model = model.to(torch.device('cuda:0'))
|
||||
|
||||
return model
|
@ -69,6 +69,7 @@ parser.add_argument('--cai-chat', action='store_true', help='Launch the web UI i
|
||||
parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text.')
|
||||
parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision.')
|
||||
parser.add_argument('--load-in-4bit', action='store_true', help='Load the model with 4-bit precision. Currently only works with LLaMA.')
|
||||
parser.add_argument('--gptq-bits', type=int, default=0, help='Load a pre-quantized model with specified precision. 2, 3, 4 and 8bit are supported. Currently only works with LLaMA.')
|
||||
parser.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.')
|
||||
parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.')
|
||||
parser.add_argument('--disk', action='store_true', help='If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk.')
|
||||
|
Loading…
Reference in New Issue
Block a user