Merge pull request #149 from oobabooga/RWKV

Add RWKV support
This commit is contained in:
oobabooga 2023-03-01 16:57:45 -03:00 committed by GitHub
commit f3da6dcc8f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 73 additions and 1 deletions

45
modules/RWKV.py Normal file
View File

@ -0,0 +1,45 @@
import os
import time
import types
from pathlib import Path
import numpy as np
import torch
import modules.shared as shared
np.set_printoptions(precision=4, suppress=True, linewidth=200)
os.environ['RWKV_JIT_ON'] = '1'
os.environ["RWKV_CUDA_ON"] = '0' # '1' : use CUDA kernel for seq mode (much faster)
from rwkv.model import RWKV
from rwkv.utils import PIPELINE, PIPELINE_ARGS
class RWKVModel:
def __init__(self):
pass
@classmethod
def from_pretrained(self, path, dtype="fp16", device="cuda"):
tokenizer_path = Path(f"{path.parent}/20B_tokenizer.json")
model = RWKV(model=path.as_posix(), strategy=f'{device} {dtype}')
pipeline = PIPELINE(model, tokenizer_path.as_posix())
result = self()
result.pipeline = pipeline
return result
def generate(self, context, token_count=20, temperature=1, top_p=1, alpha_frequency=0.25, alpha_presence=0.25, token_ban=[0], token_stop=[], callback=None):
args = PIPELINE_ARGS(
temperature = temperature,
top_p = top_p,
alpha_frequency = alpha_frequency, # Frequency Penalty (as in GPT-3)
alpha_presence = alpha_presence, # Presence Penalty (as in GPT-3)
token_ban = token_ban, # ban the generation of some tokens
token_stop = token_stop
)
return context+self.pipeline.generate(context, token_count=token_count, args=args, callback=callback)

View File

@ -38,8 +38,10 @@ def load_model(model_name):
print(f"Loading {model_name}...") print(f"Loading {model_name}...")
t0 = time.time() t0 = time.time()
shared.is_RWKV = model_name.lower().startswith('rwkv-')
# Default settings # Default settings
if not (shared.args.cpu or shared.args.load_in_8bit or shared.args.auto_devices or shared.args.disk or shared.args.gpu_memory is not None or shared.args.cpu_memory is not None or shared.args.deepspeed or shared.args.flexgen): if not (shared.args.cpu or shared.args.load_in_8bit or shared.args.auto_devices or shared.args.disk or shared.args.gpu_memory is not None or shared.args.cpu_memory is not None or shared.args.deepspeed or shared.args.flexgen or shared.is_RWKV):
if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')): if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True) model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
else: else:
@ -75,6 +77,14 @@ def load_model(model_name):
model.module.eval() # Inference model.module.eval() # Inference
print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}") print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")
# RMKV model (not on HuggingFace)
elif shared.is_RWKV:
from modules.RWKV import RWKVModel
model = RWKVModel.from_pretrained(Path(f'models/{model_name}'), dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16", device="cpu" if shared.args.cpu else "cuda")
return model, None
# Custom # Custom
else: else:
command = "AutoModelForCausalLM.from_pretrained" command = "AutoModelForCausalLM.from_pretrained"

View File

@ -5,6 +5,7 @@ tokenizer = None
model_name = "" model_name = ""
soft_prompt_tensor = None soft_prompt_tensor = None
soft_prompt = False soft_prompt = False
is_RWKV = False
# Chat variables # Chat variables
history = {'internal': [], 'visible': []} history = {'internal': [], 'visible': []}

View File

@ -5,6 +5,7 @@ import time
import numpy as np import numpy as np
import torch import torch
import transformers import transformers
from rwkv.utils import PIPELINE, PIPELINE_ARGS
from tqdm import tqdm from tqdm import tqdm
import modules.shared as shared import modules.shared as shared
@ -21,6 +22,9 @@ def get_max_prompt_length(tokens):
return max_length return max_length
def encode(prompt, tokens_to_generate=0, add_special_tokens=True): def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
if shared.is_RWKV:
return prompt
input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=get_max_prompt_length(tokens_to_generate), add_special_tokens=add_special_tokens) input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=get_max_prompt_length(tokens_to_generate), add_special_tokens=add_special_tokens)
if shared.args.cpu: if shared.args.cpu:
return input_ids return input_ids
@ -80,6 +84,17 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
if not shared.args.cpu: if not shared.args.cpu:
torch.cuda.empty_cache() torch.cuda.empty_cache()
if shared.is_RWKV:
if shared.args.no_stream:
reply = shared.model.generate(question, token_count=max_new_tokens, temperature=temperature, top_p=top_p)
yield formatted_outputs(reply, None)
else:
for i in range(max_new_tokens//8):
reply = shared.model.generate(question, token_count=8, temperature=temperature, top_p=top_p)
yield formatted_outputs(reply, None)
question = reply
return formatted_outputs(reply, None)
original_question = question original_question = question
if not (shared.args.chat or shared.args.cai_chat): if not (shared.args.chat or shared.args.cai_chat):
question = apply_extensions(question, "input") question = apply_extensions(question, "input")

View File

@ -3,5 +3,6 @@ bitsandbytes==0.37.0
flexgen==0.1.6 flexgen==0.1.6
gradio==3.18.0 gradio==3.18.0
numpy numpy
rwkv==0.0.5
safetensors==0.2.8 safetensors==0.2.8
git+https://github.com/huggingface/transformers git+https://github.com/huggingface/transformers