mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-25 17:29:22 +01:00
commit
f3da6dcc8f
45
modules/RWKV.py
Normal file
45
modules/RWKV.py
Normal file
@ -0,0 +1,45 @@
|
|||||||
|
import os
|
||||||
|
import time
|
||||||
|
import types
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
|
||||||
|
import modules.shared as shared
|
||||||
|
|
||||||
|
np.set_printoptions(precision=4, suppress=True, linewidth=200)
|
||||||
|
|
||||||
|
os.environ['RWKV_JIT_ON'] = '1'
|
||||||
|
os.environ["RWKV_CUDA_ON"] = '0' # '1' : use CUDA kernel for seq mode (much faster)
|
||||||
|
|
||||||
|
from rwkv.model import RWKV
|
||||||
|
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
||||||
|
|
||||||
|
|
||||||
|
class RWKVModel:
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def from_pretrained(self, path, dtype="fp16", device="cuda"):
|
||||||
|
tokenizer_path = Path(f"{path.parent}/20B_tokenizer.json")
|
||||||
|
|
||||||
|
model = RWKV(model=path.as_posix(), strategy=f'{device} {dtype}')
|
||||||
|
pipeline = PIPELINE(model, tokenizer_path.as_posix())
|
||||||
|
|
||||||
|
result = self()
|
||||||
|
result.pipeline = pipeline
|
||||||
|
return result
|
||||||
|
|
||||||
|
def generate(self, context, token_count=20, temperature=1, top_p=1, alpha_frequency=0.25, alpha_presence=0.25, token_ban=[0], token_stop=[], callback=None):
|
||||||
|
args = PIPELINE_ARGS(
|
||||||
|
temperature = temperature,
|
||||||
|
top_p = top_p,
|
||||||
|
alpha_frequency = alpha_frequency, # Frequency Penalty (as in GPT-3)
|
||||||
|
alpha_presence = alpha_presence, # Presence Penalty (as in GPT-3)
|
||||||
|
token_ban = token_ban, # ban the generation of some tokens
|
||||||
|
token_stop = token_stop
|
||||||
|
)
|
||||||
|
|
||||||
|
return context+self.pipeline.generate(context, token_count=token_count, args=args, callback=callback)
|
@ -38,8 +38,10 @@ def load_model(model_name):
|
|||||||
print(f"Loading {model_name}...")
|
print(f"Loading {model_name}...")
|
||||||
t0 = time.time()
|
t0 = time.time()
|
||||||
|
|
||||||
|
shared.is_RWKV = model_name.lower().startswith('rwkv-')
|
||||||
|
|
||||||
# Default settings
|
# Default settings
|
||||||
if not (shared.args.cpu or shared.args.load_in_8bit or shared.args.auto_devices or shared.args.disk or shared.args.gpu_memory is not None or shared.args.cpu_memory is not None or shared.args.deepspeed or shared.args.flexgen):
|
if not (shared.args.cpu or shared.args.load_in_8bit or shared.args.auto_devices or shared.args.disk or shared.args.gpu_memory is not None or shared.args.cpu_memory is not None or shared.args.deepspeed or shared.args.flexgen or shared.is_RWKV):
|
||||||
if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
|
if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
|
||||||
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
|
||||||
else:
|
else:
|
||||||
@ -75,6 +77,14 @@ def load_model(model_name):
|
|||||||
model.module.eval() # Inference
|
model.module.eval() # Inference
|
||||||
print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")
|
print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")
|
||||||
|
|
||||||
|
# RMKV model (not on HuggingFace)
|
||||||
|
elif shared.is_RWKV:
|
||||||
|
from modules.RWKV import RWKVModel
|
||||||
|
|
||||||
|
model = RWKVModel.from_pretrained(Path(f'models/{model_name}'), dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16", device="cpu" if shared.args.cpu else "cuda")
|
||||||
|
|
||||||
|
return model, None
|
||||||
|
|
||||||
# Custom
|
# Custom
|
||||||
else:
|
else:
|
||||||
command = "AutoModelForCausalLM.from_pretrained"
|
command = "AutoModelForCausalLM.from_pretrained"
|
||||||
|
@ -5,6 +5,7 @@ tokenizer = None
|
|||||||
model_name = ""
|
model_name = ""
|
||||||
soft_prompt_tensor = None
|
soft_prompt_tensor = None
|
||||||
soft_prompt = False
|
soft_prompt = False
|
||||||
|
is_RWKV = False
|
||||||
|
|
||||||
# Chat variables
|
# Chat variables
|
||||||
history = {'internal': [], 'visible': []}
|
history = {'internal': [], 'visible': []}
|
||||||
|
@ -5,6 +5,7 @@ import time
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
import transformers
|
import transformers
|
||||||
|
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
@ -21,6 +22,9 @@ def get_max_prompt_length(tokens):
|
|||||||
return max_length
|
return max_length
|
||||||
|
|
||||||
def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
|
def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
|
||||||
|
if shared.is_RWKV:
|
||||||
|
return prompt
|
||||||
|
|
||||||
input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=get_max_prompt_length(tokens_to_generate), add_special_tokens=add_special_tokens)
|
input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=get_max_prompt_length(tokens_to_generate), add_special_tokens=add_special_tokens)
|
||||||
if shared.args.cpu:
|
if shared.args.cpu:
|
||||||
return input_ids
|
return input_ids
|
||||||
@ -80,6 +84,17 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
|||||||
if not shared.args.cpu:
|
if not shared.args.cpu:
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
if shared.is_RWKV:
|
||||||
|
if shared.args.no_stream:
|
||||||
|
reply = shared.model.generate(question, token_count=max_new_tokens, temperature=temperature, top_p=top_p)
|
||||||
|
yield formatted_outputs(reply, None)
|
||||||
|
else:
|
||||||
|
for i in range(max_new_tokens//8):
|
||||||
|
reply = shared.model.generate(question, token_count=8, temperature=temperature, top_p=top_p)
|
||||||
|
yield formatted_outputs(reply, None)
|
||||||
|
question = reply
|
||||||
|
return formatted_outputs(reply, None)
|
||||||
|
|
||||||
original_question = question
|
original_question = question
|
||||||
if not (shared.args.chat or shared.args.cai_chat):
|
if not (shared.args.chat or shared.args.cai_chat):
|
||||||
question = apply_extensions(question, "input")
|
question = apply_extensions(question, "input")
|
||||||
|
@ -3,5 +3,6 @@ bitsandbytes==0.37.0
|
|||||||
flexgen==0.1.6
|
flexgen==0.1.6
|
||||||
gradio==3.18.0
|
gradio==3.18.0
|
||||||
numpy
|
numpy
|
||||||
|
rwkv==0.0.5
|
||||||
safetensors==0.2.8
|
safetensors==0.2.8
|
||||||
git+https://github.com/huggingface/transformers
|
git+https://github.com/huggingface/transformers
|
||||||
|
Loading…
Reference in New Issue
Block a user