mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-22 16:17:57 +01:00
Add file
This commit is contained in:
parent
838f768437
commit
fac55e70f7
38
convert-to-torch.py
Normal file
38
convert-to-torch.py
Normal file
@ -0,0 +1,38 @@
|
|||||||
|
'''
|
||||||
|
Converts a transformers model to .pt, which is faster to load.
|
||||||
|
|
||||||
|
Run with python convert.py /path/to/model/
|
||||||
|
Make sure to write /path/to/model/ with a trailing / and not
|
||||||
|
/path/to/model
|
||||||
|
|
||||||
|
Output will be written to torch-dumps/name-of-the-model.pt
|
||||||
|
'''
|
||||||
|
|
||||||
|
from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, OPTForCausalLM, AutoTokenizer, set_seed
|
||||||
|
from transformers import GPT2Tokenizer, GPT2Model, T5Tokenizer, T5ForConditionalGeneration
|
||||||
|
import torch
|
||||||
|
import sys
|
||||||
|
from sys import argv
|
||||||
|
import time
|
||||||
|
import glob
|
||||||
|
import psutil
|
||||||
|
|
||||||
|
print(f"torch-dumps/{argv[1].split('/')[-2]}.pt")
|
||||||
|
|
||||||
|
if argv[1].endswith('pt'):
|
||||||
|
model = OPTForCausalLM.from_pretrained(argv[1], device_map="auto")
|
||||||
|
torch.save(model, f"torch-dumps/{argv[1].split('/')[-2]}.pt")
|
||||||
|
elif 'galactica' in argv[1].lower():
|
||||||
|
model = OPTForCausalLM.from_pretrained(argv[1], low_cpu_mem_usage=True, torch_dtype=torch.float16)
|
||||||
|
#model = OPTForCausalLM.from_pretrained(argv[1], low_cpu_mem_usage=True, load_in_8bit=True)
|
||||||
|
torch.save(model, f"torch-dumps/{argv[1].split('/')[-2]}.pt")
|
||||||
|
elif 'flan-t5' in argv[1].lower():
|
||||||
|
model = T5ForConditionalGeneration.from_pretrained(argv[1], low_cpu_mem_usage=True, torch_dtype=torch.float16)
|
||||||
|
torch.save(model, f"torch-dumps/{argv[1].split('/')[-2]}.pt")
|
||||||
|
else:
|
||||||
|
print("Loading the model")
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(argv[1], low_cpu_mem_usage=True, torch_dtype=torch.float16)
|
||||||
|
print("Model loaded")
|
||||||
|
#model = AutoModelForCausalLM.from_pretrained(argv[1], device_map='auto', load_in_8bit=True)
|
||||||
|
torch.save(model, f"torch-dumps/{argv[1].split('/')[-2]}.pt")
|
||||||
|
|
Loading…
Reference in New Issue
Block a user