mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-11-22 08:07:56 +01:00
added no_mmap & mlock parameters to llama.cpp and removed llamacpp_model_alternative (#1649)
--------- Co-authored-by: oobabooga <112222186+oobabooga@users.noreply.github.com>
This commit is contained in:
parent
2f1a2846d1
commit
fbcd32988e
@ -220,8 +220,10 @@ Optionally, you can use the following command-line flags:
|
||||
|
||||
| Flag | Description |
|
||||
|-------------|-------------|
|
||||
| `--threads` | Number of threads to use in llama.cpp. |
|
||||
| `--n_batch` | Processing batch size for llama.cpp. |
|
||||
| `--threads` | Number of threads to use. |
|
||||
| `--n_batch` | Maximum number of prompt tokens to batch together when calling llama_eval. |
|
||||
| `--no-mmap` | Prevent mmap from being used. |
|
||||
| `--mlock` | Force the system to keep the model in RAM. |
|
||||
|
||||
#### GPTQ
|
||||
|
||||
|
@ -1,78 +1,63 @@
|
||||
import multiprocessing
|
||||
'''
|
||||
Based on
|
||||
https://github.com/abetlen/llama-cpp-python
|
||||
|
||||
import llamacpp
|
||||
Documentation:
|
||||
https://abetlen.github.io/llama-cpp-python/
|
||||
'''
|
||||
|
||||
from llama_cpp import Llama, LlamaCache
|
||||
|
||||
from modules import shared
|
||||
from modules.callbacks import Iteratorize
|
||||
|
||||
|
||||
class LlamaCppTokenizer:
|
||||
"""A thin wrapper over the llamacpp tokenizer"""
|
||||
def __init__(self, model: llamacpp.LlamaInference):
|
||||
self._tokenizer = model.get_tokenizer()
|
||||
self.eos_token_id = 2
|
||||
self.bos_token_id = 0
|
||||
|
||||
@classmethod
|
||||
def from_model(cls, model: llamacpp.LlamaInference):
|
||||
return cls(model)
|
||||
|
||||
def encode(self, prompt: str):
|
||||
return self._tokenizer.tokenize(prompt)
|
||||
|
||||
def decode(self, ids):
|
||||
return self._tokenizer.detokenize(ids)
|
||||
|
||||
|
||||
class LlamaCppModel:
|
||||
def __init__(self):
|
||||
self.initialized = False
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(self, path):
|
||||
params = llamacpp.InferenceParams()
|
||||
params.path_model = str(path)
|
||||
params.n_threads = shared.args.threads or multiprocessing.cpu_count() // 2
|
||||
|
||||
_model = llamacpp.LlamaInference(params)
|
||||
|
||||
result = self()
|
||||
result.model = _model
|
||||
result.params = params
|
||||
|
||||
tokenizer = LlamaCppTokenizer.from_model(_model)
|
||||
return result, tokenizer
|
||||
params = {
|
||||
'model_path': str(path),
|
||||
'n_ctx': 2048,
|
||||
'seed': 0,
|
||||
'n_threads': shared.args.threads or None,
|
||||
'n_batch': shared.args.n_batch,
|
||||
'use_mmap': not shared.args.no_mmap,
|
||||
'use_mlock': shared.args.mlock
|
||||
}
|
||||
self.model = Llama(**params)
|
||||
self.model.set_cache(LlamaCache)
|
||||
|
||||
# This is ugly, but the model and the tokenizer are the same object in this library.
|
||||
return result, result
|
||||
|
||||
def encode(self, string):
|
||||
if type(string) is str:
|
||||
string = string.encode()
|
||||
return self.model.tokenize(string)
|
||||
|
||||
def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=1, callback=None):
|
||||
params = self.params
|
||||
params.n_predict = token_count
|
||||
params.top_p = top_p
|
||||
params.top_k = top_k
|
||||
params.temp = temperature
|
||||
params.repeat_penalty = repetition_penalty
|
||||
# params.repeat_last_n = repeat_last_n
|
||||
if type(context) is str:
|
||||
context = context.encode()
|
||||
tokens = self.model.tokenize(context)
|
||||
|
||||
# self.model.params = params
|
||||
self.model.add_bos()
|
||||
self.model.update_input(context)
|
||||
output = b""
|
||||
count = 0
|
||||
for token in self.model.generate(tokens, top_k=top_k, top_p=top_p, temp=temperature, repeat_penalty=repetition_penalty):
|
||||
text = self.model.detokenize([token])
|
||||
output += text
|
||||
if callback:
|
||||
callback(text.decode())
|
||||
|
||||
output = ""
|
||||
is_end_of_text = False
|
||||
ctr = 0
|
||||
while ctr < token_count and not is_end_of_text:
|
||||
if self.model.has_unconsumed_input():
|
||||
self.model.ingest_all_pending_input()
|
||||
else:
|
||||
self.model.eval()
|
||||
token = self.model.sample()
|
||||
text = self.model.token_to_str(token)
|
||||
output += text
|
||||
is_end_of_text = token == self.model.token_eos()
|
||||
if callback:
|
||||
callback(text)
|
||||
ctr += 1
|
||||
count += 1
|
||||
if count >= token_count or (token == self.model.token_eos()):
|
||||
break
|
||||
|
||||
return output
|
||||
return output.decode()
|
||||
|
||||
def generate_with_streaming(self, **kwargs):
|
||||
with Iteratorize(self.generate, kwargs, callback=None) as generator:
|
||||
|
@ -1,65 +0,0 @@
|
||||
'''
|
||||
Based on
|
||||
https://github.com/abetlen/llama-cpp-python
|
||||
|
||||
Documentation:
|
||||
https://abetlen.github.io/llama-cpp-python/
|
||||
'''
|
||||
|
||||
from llama_cpp import Llama, LlamaCache
|
||||
|
||||
from modules import shared
|
||||
from modules.callbacks import Iteratorize
|
||||
|
||||
|
||||
class LlamaCppModel:
|
||||
def __init__(self):
|
||||
self.initialized = False
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(self, path):
|
||||
result = self()
|
||||
|
||||
params = {
|
||||
'model_path': str(path),
|
||||
'n_ctx': 2048,
|
||||
'seed': 0,
|
||||
'n_threads': shared.args.threads or None,
|
||||
'n_batch': shared.args.n_batch
|
||||
}
|
||||
self.model = Llama(**params)
|
||||
self.model.set_cache(LlamaCache)
|
||||
|
||||
# This is ugly, but the model and the tokenizer are the same object in this library.
|
||||
return result, result
|
||||
|
||||
def encode(self, string):
|
||||
if type(string) is str:
|
||||
string = string.encode()
|
||||
return self.model.tokenize(string)
|
||||
|
||||
def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=1, callback=None):
|
||||
if type(context) is str:
|
||||
context = context.encode()
|
||||
tokens = self.model.tokenize(context)
|
||||
|
||||
output = b""
|
||||
count = 0
|
||||
for token in self.model.generate(tokens, top_k=top_k, top_p=top_p, temp=temperature, repeat_penalty=repetition_penalty):
|
||||
text = self.model.detokenize([token])
|
||||
output += text
|
||||
if callback:
|
||||
callback(text.decode())
|
||||
|
||||
count += 1
|
||||
if count >= token_count or (token == self.model.token_eos()):
|
||||
break
|
||||
|
||||
return output.decode()
|
||||
|
||||
def generate_with_streaming(self, **kwargs):
|
||||
with Iteratorize(self.generate, kwargs, callback=None) as generator:
|
||||
reply = ''
|
||||
for token in generator:
|
||||
reply += token
|
||||
yield reply
|
@ -129,7 +129,7 @@ def load_model(model_name):
|
||||
|
||||
# llamacpp model
|
||||
elif shared.model_type == 'llamacpp':
|
||||
from modules.llamacpp_model_alternative import LlamaCppModel
|
||||
from modules.llamacpp_model import LlamaCppModel
|
||||
|
||||
path = Path(f'{shared.args.model_dir}/{model_name}')
|
||||
if path.is_file():
|
||||
|
@ -120,8 +120,10 @@ parser.add_argument('--sdp-attention', action='store_true', help="Use torch 2.0'
|
||||
parser.add_argument('--trust-remote-code', action='store_true', help="Set trust_remote_code=True while loading a model. Necessary for ChatGLM.")
|
||||
|
||||
# llama.cpp
|
||||
parser.add_argument('--threads', type=int, default=0, help='Number of threads to use in llama.cpp.')
|
||||
parser.add_argument('--n_batch', type=int, default=8, help='Processing batch size for llama.cpp.')
|
||||
parser.add_argument('--threads', type=int, default=0, help='Number of threads to use.')
|
||||
parser.add_argument('--n_batch', type=int, default=512, help='Maximum number of prompt tokens to batch together when calling llama_eval.')
|
||||
parser.add_argument('--no_mmap', action='store_true', help='Prevent mmap from being used.')
|
||||
parser.add_argument('--mlock', action='store_true', help='Force the system to keep the model in RAM.')
|
||||
|
||||
# GPTQ
|
||||
parser.add_argument('--wbits', type=int, default=0, help='Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported.')
|
||||
|
Loading…
Reference in New Issue
Block a user